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ABSTRACT

It is proposed that flat plates can have their buckling strength
increased by prestressing. The prestressing is accomplished by first
cold rolling the plates into cylindrical form and then opening the
plate by riveting onto or clamping into a flat frame. This prestressing
will produce membrane stresses in the plane of the plate of such a
magnitude and distribution as to raise its buckling load in the direction
of the generator of the cylinder. The present investigation was restricted
to the case of all four sides clamped.

The stresses produced by this process are measured and their effect
calculated by the Rayleigh-Ritz method. The analysis shows that small
stresses (1000 psi maximum) could raise the buckling load almost 50%,
and probably more. These stresses would also change the buckling mode
in some of the cases examined from antisymmetrical to symmetrical modes.

A testing frame was constructed to produce, and measure the effect
of the proposed prestressing. The tests showed that the buckling load
was raised in some cases over 100% while the average for all tests was
38%.

A theoretical evaluation of the membrane stresses and their effect
was carried out vhich involved the solution of the non-linear plate
equations of Von Karman. Because the necessity of using the rather
approximate assumptions, the analysis could be subjected to questioning.
Nevertheless, the analysis showed that the buckling load at one particu-
lar type of prestressed plate would be raised approximately 15%.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMANDER:

LESLIE B. WILLIAMS
Colonel, USAF
Chief, Aeronautical Research Laboratory
Directorate of Research
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SECTION I

Introduction

Before the advent of modern high speed aircraft, wrinkling of the
covering of aircraft components due to local buckling under flight loads
did not introduce any serious problems because such wrinkling does not
have a material effect on the performance of the aircraft. Present day
high speed aircraft, however, often operate under conditions in which
the local airstream Mach number adjacent to the aerodynamic surfaces is
nearly unity; consequently even slight surface irregularities, such as
the appearance of wrinkles due to buckling, may cause the local velocity
to become supersonic. Such changes from subsonic to supersonic flow are
accompanied by the formation of shock waves in the flow which materially
increase the drag of the aircraft. It is therefore desirable for these
aircraft to employ a covering which will not buckle at flight loads and
yet will not introduce any undue increase in the weight of the structure.

One type of such structure is sandwich construction. Sandwich
construction consists of two thin external or face layers of high-strength
material, such as aluminum alloy sheet, bonded to a thick internal layer
or core of light-weight material, such as balsa wood or cellular cellulose
acetate. The core serves to separate the strong faces a fixed distance
apart, thus giving the structure a high bending and therefore buckling
strength, but without a substantially increase in weight. This type of
construction has been the subject of intensive investigation and considerable
work has been done at the Guggenheim School of Aeronautics of New York
University (1,2).

In this report an attempt is made to introduce another type of construc-
tion where buckling is delayed by a method of prestressing. The method
is as follows. First, the thin sheet is curved by cold rolling in the
direction perpendicular to the direction of compression, then it is opened
elastically and attached to the stiffeners or the frame of the panel. By
such a process, it was found that in-plane stresses are induced and the
buckling loads are increased materially. Both experimental and theoretical
investigations have been carried out to study this method of prestressing.

The fact that the buckling loads can be appreciably raised by first
overcurving the panel and then elastically bring it to the desired curvature
was first noticed by Welter (3) in his study on the effect of imperfection
on the buckling loads of curved plates. Welter gave no explanation on this
phenomenom. Later, Cox (4) indicated that favorable deformations occurring
from the elastic bending accounted for the raising of the buckling load.
This view was substantiated by Cicala (5) who showed that in certain cases
the buckling load could be increased due to favorable deformations.

Although favorable deformations will doubtlessly be a factor in raising
the buckling loads, an equally important cause, if not the major cause, is
believed to be the presence of the induced in-plane stresses. This is born
out In the present investigation where curved. sheets were elastically opened
to flat ones, because in general no favorable deformations can exist for a
flat plate. The term "in general" is used in the above statement in deference
to Cox's (4) statement that a favorable irperfection could be possible so as
to develop a mode corresponding to a slihtl-y higher buckling load.
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SECTION II

OUTLINE OF THE EXPERIMENTAL PROGRAM

Before describing the experimenta carried out, Welter's (3)
experiments should be reviewed at this point since it was his
experiments which brought to light this particular method of
prestressing thin plates to increase their buckling load. Welter
presented the results of some experiments he performed with no
attempt to explain the phenomenom discovered.

He performed his tests on both 17ST aluminum alloy of .036 in.
thickness and 2S 3/4 H pure aluminum sheets of .032 in. thickness,
both of 24 in. width and 96 in. length. The cylindrical plates
were tested with a radius of curvature of 24 inches. The initial
radii of curvatures of the plates varied between 6 in. and 24 in.
(the latter being a non-prestressed plate) and were tested with a
radius of 24 in. by opening the plate elastically to the greater
radius. These tests showed increases in the buckling loads up to
50%. There were, however, a total of only nineteen tests performed
and of these perhaps only half the results were conclusive.

The present experimental program can be divided into three
parts: first, to determine whether objectionable deflections were
produced during the prestressing process; secondly, to determine
whether the prestressing process produced inplane (membrane) stresses
that could be capable of raising the buckling load of the flat
plate; and thirdly, to measure the buckling loads of prestressed
plates and compare them with that of the corresponding non-prestressed
flat plate.

SECTION III

TESTS TO DETERMINE THE INITIAL DEFLECTIONS DUE TO PRESTRESSING

Since the purpose of prestressing is to delay the occurrence of
wrinkles due to buckling, it is important to determine first whether
it is possible to clamp an initially curved plate without undesirable
initial deflections. By "undesirable", it is inferred that the maximum
deflection of the plate should be less than the thickness of the plate.

Three "flatness" tests'were performed. One of the tests was
performed on a half-hard brass plate while the other two were performed
on 24ST aluminum plates. The brass plate was 19 1/2 by 12 inches and
had a nominal thickness of 1/32 inch. The aluminum plates were 19.25
by 13.833 inches and had nominal thicknesses of .032 and .040 inches.
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The clamping of the plate was executed on the compression base

of the 200,000 lb. Baldwin-Southwark Universal Testing Machine. In

this base there are several conveniently located, "Tee" Slots, which

were'used in clamping the plates to the base.

The clamping of the brass plates (see Fig. 1) was accomplished
by using eight-I/2 inch thick, 1 1/4 inch wide steel bars. Two of
these bars, 19 1/2 inches long were placed parallel to each other
so that the edges of the bars and the "Tee" slots coincided. Two
bars 9 1/2 inches long and parallel to each other wEre positioned on
the base so that they were perpendicular to the 19 1/2 inch bars.

The brass test plate was set on
this frame, and corresponding steel
bars were oriented in similar positions
on top of the brass plate, thus
forming the clamping frame.

J Twelve, 1/2 inch standard
I steel bolts whose heads were fitted
* with lock-washers were registered,, •i':, "into the "NTee" slots of the

ri. , •.compression base and were positionedas indicated in Fig. 1. The top

- !• ,of each bolt was fitted with a large
diameter and a standard diameter
steel washer. The diameter of the

•* large steel washer was such that
it extended over a considerable

/ portion of the width of the steel
clamping bars. On the side of each
bolt opposite to that of the steel
bar were placed three shims, two of
them being 1/2 inch thick, and one
being 1/32 inch thick. Thus the
total thickness of the shims equaled
that of the steel bars and test plate.

Clamping of Brass Plates for By fitting a nut on the top of each
"Flatness" tests bolt so that it bears on the washer,

and tightening the nut, a clamping of
Fig. 1 the spedimen between the steel bars

was obtained.

After the plate was clamped by tightening down on each of the
twelve bolts, the deflections of the plate at several positions were
measured by a Starrett dial gage graduated with divisions of .001
inches.
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The clamping of the Almin-m plates (see Fig. 2) was accomplished
by using eight.- 5/8 inch thick, 1 1/2 inch wide steel bars in a manner
similar to the procedure used for the brass plate. In this series of
tests two holes were drilled in each of the steel bars and half the
bars were tapped and the other half drilled clear to accomodate bolts
that would clamp the steel bars tightly to the edges of the plates.
Two pairs of the steel bars were 19.25 inches long while the other
two pairs were 10.75 inches long. The ends of the shorter bars which
were underneath the plate were beveled to leave a passageway for the
wires connected to the strain gages on the bottom surface of the plate
as required in the determination of inplane strains described in the
next section.

The bolts for
clamping the plate to
the base of the testing
machine were specially
modified to fit the
"Tee" slots thus making
clamping of the plate
easier. The hexagonal
head of the bolt was
replaced by a square head
machined to fit the
bottom of the "Tee" slot
exactly. Instead of
large washers being used

,3f -0. ;to transmit the clamping
force from the bolt to
the steel bars, special

Clamping of Aluminum Plates for "Flatness" "clamps" were made from
Tests 3/8 x l 1/4 x 2 inch bars

with holes drilled through
Fig. 2 the center to accomodate

the bolt. One end of
these "clamps" rested on

the steel bars, forming a frame in which the plate was held, while the
other end rested on bars 1.30 inches high (approximately the height of
the frame).

The dial gage was fastened by means of rods to a gage "base plate".
The gage was adjusted so that its measuring rod was perpendicular to
the plane of the test plate. The measurements at the various positions
were obtained by sliding the gage "base plate" along the surface of the
compression base of the testing machine, until the rod of the gage was
situated directly on the desired point. At each point, the measuring rod
was lifted a small distance above the plate and then released, so as to
obtain the same measuring pressure at each point.

The various measuring positions are illustrated in Figs. 3, 4, and
5 for the brass and aluminum plates. A particular point is defined by
two numbers, the first indicating the position along the short side of
the frame, the second along the long side.
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The reference point, or the point at which the dial gage was set to
zero, was arbitrarily selected at point 5-9. for the brass plate and
1-1 for the aluinum plates.
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The results of the tests are in Tables 1 (ab, and c).

The commercial designation of the brass plate was 1/32 inch with
a standard commercial tolerance of ± .002 inches. From the results,
it can be observed that the maximyn positive deflection is + .003
position 4-1), and the maximum negative deflection - .007 inches
position 3-3, 3-4, 3-6). Thus the percentage maximu deflections

based upon the plate nominal thickness of 1/32 inch are + 9.6% and
- 22.4% or a total of 32%.

The .040 inch thick aluminum plate had an initial radius of
curvatue of 8.7 inches, and when flattened had a maximum total
deflection (the difference between the highest and lowest points on
the plate) of .022 inches or 55% of the nominal thickness.

Similarly the .032 inch thick aluminum plate with an initial
radius of curvature of 7 3/4 inches and a maximum total deflection
of .049 inches or 153% of the nominal thickness. The unusually large
deflection of this thin plate was probably caused by initial imperfections
(due to the fact that this plate had been flattened several times
previous to this experiment) and unavoidable errors in the measurements.
However, it should be noted that deflections of this order might be
expected in aircraft dug to the pressure of the airforces.

SI.'CTION IV
TESTS TO MTERKME THE INPLANE STRESSES DUE TO PRESTRESSING

There were two series of tests performed. In the first series,
three plates were tested - two brass plates and one aluminum plate.
These plates were tested before any theoretical work was carried out.
In the second series, tests were performed on four plates. These
plates were of the same size but of different thickness. The theory
indicates that the stress distribution depends on the parameters

a2 and a/b, where a is the width of the plate, b the length, h the

thickness, and R is the initial radius of curvature. The radii
of curvature of these plates were rolled in such a way that the
parameter a2/1h remains a constant value, 337.5.

Each of the seven plates was clamped flat in the frames described
in the preceding section. SR-4 strain gages were fastened to the
plates with Duoo Household cement in pans back to back at various
locations. The leads of the strain gages were attached to a multichannel
switching and balancing unit. The strain was measured by a standard
Baldwin-Southwark Type K strain indicator.

WADC TR54-8 6



The strain in a particular gage in obtained by subtracting the
initial reading taken when the plate in standing free on its curved
side and the final reading taken when the plate is clamped in the
frame. The inplane strain is obtained by taking the average of the
strains on both sides of the plate at a particular point.

In each case the radius of curvature was determined by tracing
the outline of the plate on a piece of paper. As the surface is
approximately cylindrical, the outline is approximately circular. Thus
by drawing several chords of the arc and finding the intersection
of the perpendicular bisectors of these chords, the radius of curvature
is determined.

The tests on the two brass plates did not produce consistent
results. A review of the literature of the Baldwin-Southwark Company
showed that bonding of paper backed strain gages on brass is usually
poor. This probably explains the inconsistent readings. However,
the results of these tests did indicate that inplane strains are
produced in such a process and the inplane strains in the direction
of the buckling are negligible compared to the inplane strains in
the perpendicular direction.

The aluminum plate tested in the first series was a 14 inch by
19 1/4 inch 24 - ST alloy plate with a thickness of .020 inch. Ten
SR-4 type A-l, and two type A-5 strain gages were mounted at the
position shown in Fig. 6. The test results are presented in Table 2.

As indicated, the first
two tests were performed with

______________gages 1 through 8 only. Sincev-+ ~the inplane strains are not
entirely as expected, it was
decided to investigate the
strain distribution over the

T top and bottom surfaces as each
Iof them should be smooth and

I continuous. An investigation
of the data of Table 2 reveals

-.. I that on the top surfaces
(gages 1,3,5,7) all gages

Iexcept 7 yields a smooth
distribution of strain.
similar conclusion is obtained
for gage 2 on the bottom
surface. It was therefore
decided to mount gage 9
immediately adjacent to gage
7 and gage 10 immediately

'4 adjacent to 2. Gages 7-2 and
8-2 (see Fig. 6) were attached
for checking purposes.

Location of Strain Gages on .020
Aluminum Plate

Fig. 6
WADC TR 54-8 7



From the results of test 3, it is seen that by employing gages 9
and 10 instead of 7 and 2 a smooth strain distribution is obtained. By
extrapolating, the values shown in Table 5 under "Test 3 (using
correction)" are obtained. By comparing the axial strain at 7-2, 8-2
with 7,8, the rough extrapolations are probably somewhat in error. On
a conservative basis the following inplane strains were assumed. These
values will be used in calculating the buckling load.

Position Inplane strains (xlO )

3,4 60
5,6 80
1,2 10
7,8 15

In the second series, four aluminum plates of the size of (and
including) the aluminum plates described in the preceding section were
tested. The locations of the strain gages for three plates (namely
one each of .032, .040, and .051 inch thickness), are shown in Fig. 4,
while for the remaining test (on a .040 plate) are shown in Fig. 5.

In this series of tests the zero readings were taken v. N the
plates standing on its curved (shorter) edge, and with and without
the bars attached to the longer edges. The reason for taking zero
readings with bars attached to the longer edges was to force these
edges to be straight, which they would have been had adequate means been

,available for cold rolling the plates. The data taken for the five
tests are shown in Tables 3 through 10. Note that in some cases the
tests were repeated on the plates several times.

In the case of the .040 aluminum plate whose data is recorded
in Table 10 many of the readings should be identical and this property
of symmetry was used in analyzing the data to eliminate any unreasonable
data. This analysis is shown in Figs. 7a and b where the observed data
and the derived averages are indicated.

2600 1 2600

__l___r4 At ttr/€
AT •_ •-_. - ".

C A'C-a

250 ---- -=IS 5

9400 P40d h /
0 'e bA4 3 b/2

Distance fro. idge,inahes Distance from adgepinohns

Graph Used for Averaging the Values of the

.040 inch Aluminum Plate

Fig. 7a Fig. 7b
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Using Fig. 7a and b to arrive at a "reasonable "estimate for the
membrane strains of the plate in the x-direction for the upper left
(of Fig. 5) quadrant we obtain the values listed in Table Ui. Similarly
in the cases of the other plates referring to Fig. 5 we find because
of symmetry; the membrane strains as listed in Table 12 through 14.

SECTION V

DETERMINATION OF THE BUJCKLING LOAD BY FINITE DIFFERENCE APPROXIMATION

Assuming that the inplane stresses due to prestressing do not
change while the buckling load is applied, the buckling load can be
calculated by means of finite difference approximation. Two objections
can be raised against such a procedure. First, since there are small
initial deflections due to prestressing, the theoretical buckling load,
which defines the stability limit, does not exist. Secondly, these
inplane stresses due to prestressing, because of the initial deflections,
certainly will change while the buckling load is applied. The excuse
for using such a procedure to calculate the buckling load is as follows.
Although the theoretical buckling load is not defined for a plate with
initial deflections, the load for such a plate at which the deflections
suddenly become large is close to the buckling load for the corresponding
plate without initial deflections. Although the change in the inplane
stresses due to prestressing while the buckling load is applied may
introduce large errors in the calculation, in the absence of a better
method, it is felt that the present method will at least give some
qualitative results to compare with the experimental results described
in the next section.

The differential equation governing the deflection of a thin plate
with inplane forces N , N and N isx y XY

K x ~ awY8Vx4 +Z +÷2 -N (1)
W D Ix

2  D 8y 2  D Oxay

Let the plate be loaded in the y-direction only. Then Nx = X0, Ny
Nycr + NyO, N a Nxy0 where the subscript 0 refers to the original

inplane forces and the subscript cr refers to the buckling value.
Since Nx hNxh,Ny yh, N = -cyh, and from the preceding

experiments it was found that 'y 0, from Hooke's Law for plane

stress we find
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N - Eh
1-V

N y eNr + • 2 x

N 31r0

Substituting into equation (1), we have

12(l-v2 ) Eh CxO a 2 vEh 82wv
V i_2 48x_ (N r 2 r-0 (2)

It is convenient to put equation (2) in non-dimensional form by letting

Wt -w/hp N,.l 2(l-v 2)a 2 Nyo ta 'mx/a
''"yl,• ycr y/c

y1 Uy/a, x a2(.c /h2

We have, therefore,

7 W -12c 8x,2 ", Ly,2 0(3

2w ~(N'I + 12 V C')L (- u(3)

whereV 4 is the biharmonic operator referring to the non-dimensional
coordinates.

lot us now transform this equation into finite difference equations.
Let the plate be divided into rectangular meshes witha y - kAy, where

A X and Ay are the sides of
meshes. For the 19 1/4"
x 14" .020" Aluminum alloy
_ _ _ _ _ _ _plate clamped by the 1 1/4
bars, the plate area is
actuall, (19 1/4" - 2 1/2"), x (1/" - 2 1/2).) If we

--4 divide the plate as shown
__in Fig. 8, we have

- - b/4, k- 16.5 " 1.457, v - 3.

Li I 11.0

I I
0 0 10 10

Net Points for Finite Difference Solution

Fig. 8
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To approximate the boundary conditions more accurately, imaginary net

points outside the plate are introduced. From the boundary conditions,

they are equal to the values one mesh point inside the boundary as

indicated in Fig. 8. The finite difference equations at various points

are as follows:*

At v 0 "

(177.7+18.52 ex +2N*I )wo-2(44•'45" 6 6 ef )wl

-2(94.2+3.6 ck +Ny1r)w2+4(15.09)w 3 = 0 (4)

At vi:

(177.7+18.52 cL +2Ny•r)w 1+2(3.56)wl

-(4.4+5.66 cL)wo+2(15.09)w2 -2(94.2+3. 6 c& + Nyr)w3 +0

yer 3 (5)

At w2 :

(177.7+18.52 Ex2 +2NyI )w2 +2(16.0l)w2

-(94.2+3.6 el + NyIr)wO-2 4. +5.66 c;)w 3 +2(15.09)wI (6)

At w3 :

(177.7+18.52 ci- +2NW )w3+2(16.0l)w3 +2(3.56)w3

-(94.2+3.6 C- 3 + NyIr)Wl+15"09wo-(4'4+5. 6 6  t)w 3 = (x3 yr i .3)3 0 (7)

• The transformation of partial differential equation to finite difference

equations can be found, for example, in "Applied Elasticity" by Chi-Teh
Wang, McGraw-Hill Book Co., 1953, pp. 106-143.
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where the w's at various mesh points are the non-dimensional deflections.

Using the results for the inplane stresses in the .020 inch thick
aluminum plate found in the previous section, we have, using the notation
of this section,

ex = 20 micro-inches per inch

a ' =25 " " " "
xl

e1 = 3 " " " "
x2

ex' =5 " "

The finite difference equations can be put in matrix notation as follows.

jAj+[B NyrE ] 0 (8)

where
548 -315 -332 60J

A --196 648 30.2 -3681
1-103 30.2 265 -123)
[15.1 -112.2 -72.7 3091

B=2 0 -20

-1 0 2 0
0 -I 0 2

wt

0

wia 1

3D

Equation (8) can be rewritten in the following form

- f ~fw [lTBJI1 -L. [w~J (9)
Nycr
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which is the usual form in which a solution, by iteration, for the
eigen values Ny will converge to the lowest eigen value N yre

The Inverse of A can be found (18) and is

3.396 2.078 5.069 3.832-
A7-1] 1.274 2.737 2.370 3.955 3

A = 1.502 1.038 6.507 3.533 (10")
1.6502 1 2.5 5.3 (10)

Iterating Eq. (9) according to Ref. (18) the non-dimensional buckling
parameter Nycr for the prestressed plate is found to be

N -99.3 (n)
while for the ordinary plate (setting all ex 0)

N --- 47.55 (12)
ycr

Thus using the Inplane stresses found in the previous section a
solution by finite difference approximations shows that the buckling
load can be increased about 109%.

SECTION VI

DETERMINATION OF THE BEIKLING LOAD BY ENERGY METHOD USING HARMONIC
ANALYSIS OF THE TEST DATA

The finite difference method used in the previous section loses
accuracy when used with only a few net points. As an alternative, the
Rayleigh-Ritz method can be used in finding the buckling loads of the
prestressed and non-prestressed plates. The assumed deflection will
be represented in a Fourier series and it will be convenient to represent
the inpiane stresses found in the previous sections also by a Fourier
Series.

The Rayleigh-Rits rothod will be shown in more detail in Part II
of this reprtc derl:ig 'Fr t th tr', t ctO urt7 n•°7- only ths eeer-tiali
pnints of thr. methoe? v%1` be describel i ts S & tiosa

Let Vic U, thlv 1:.•.ti oV tlp - o ' i"il d1, , .. I
Via Case of F" plat- i t,,jV.:c• edgas, V6,.; Inbn•g•t••:f n••:.

the plate, when buasl]! g is
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2

(!Li +LV) d dy (3

A
where D is the flex1ral rigidity of the plate. The work done by the
inplane forces is

(w2 2W 1- + -N,((w)2 dx dy •
2 // x 8x

where Nx - NxO; Ny , Nycr. In the above we have assumed that the

contribution to the work by the original stresses in the y-dfrection
and by the original shear streams is negligi ble. At buckling we have

U - w a o (15)
from which we obtain

Nyc " U "w (16)cr T

where

Tin f ( dx dy

2 Ox

It must be emphasized that the above relations are correct only
if there were no initial deflections. With the presence of the initial
deflections, the values of the inplane forces due to the prestressing
will probably be changed when the load N is applied, and thereforeycr
the above method of calculation may induce an error which is not small.

The Rayleigh-Ritz method can be carried out as follows. First,
the deflection w is assumed in the form of a series every term of which
satisfies the boundary conditions, but with undetermined coefficients.
Substitute the series into equation (15) and carry out the integration.
Then minimize the resulting expression with respect to the undetermined
coefficients. This yields a system of homogeneous equations involving
the buckling load Nycr . A non-trivial solution is obtained if we equate

the undetermined coefficients of these parameters to zero, from which
Nycr is determined.
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The boundary conditions will be satisfied if the deflection, w,
is assumed in the following form:

V nsin suin ~ E w~ sin mi sin. (17)
a b z-m1n-1 a b

As in Part I1, let us introduce a stress function, F, in the form

F Z Z b cos con cos= (18)
p-O q=O p'q a b

where b K E k,2 and dX -X .i
pqq ppq h 7

.The first step in this analysis is to determine the coefficients
of the series (18) corresponding to the data found experimentally and
described in the previous sections.

Since it was experimentally impossible to determine the strains
at the edges of the plate we will make use of the fact that along cross
section

Nxo dy - 0 (19)

which results from the fact that it is assumed that no traction forces
exist at the boundaries. The coefficients of the series for the stress
function will be derived by the method of collocation, which is best
described by actually deriving the coefficients for a specific set of
test data. The problem used for illustration purposes will be the same
one that was solved by the finite difference method in the previous
section.

The points at which the strains were taken will be numbered as is
shown in Fig. 8 just as was done in the previous section. The values
of the strain in micro-inches per inch will be rewritten for clarity.

Gage Position Strain

0 60
1 80
2 10
3 15
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Two series may be written one at the section x a/2 (containing
points 0 and 2) the other at the section x = a/4. Since a., dy a 0

then the series will contain only two terms each and be of the form

at x= a/2 c a2 coso +a 4 cos= (20)X0 2 b + b

at x 8/4 C o y+ 4Cos (21)

Using the formulas listed by Scarborough (7) in his section on
Harmonic Analysis and making use of the fact that by virtue of (19)
I0 and Po must be identically zero. The values of the coefficients

are found to be

a2  - 70 a4  -10 (22)

P2 a - 95 P4 = - 15

The required two dimensional series will be of the form

C cosa0fa cos+ + coo A= [aj a2,4 co
b O, 2,2 a J b L' 24 aJ

(23)

Then substituting (21) and (22) into (23) the following conditions are
arrived at for the coefficients

at x -a/2 ao, 2 -a 2 , 2  -70 ao,/+-a 2 , 4 . 10

at x - a/4 ao,2 -95 ao, 4 -- 15

Solving, we obtain

a0,2 95 a2v2 = - 25

a , - 15 a2,4 = - 5

Assuming that cyO .0, Hooke's law yields

En X0  (24)
541-
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then using Eq. (18) to relate the stress function (and coefficients)
to the membrane stresses we find

b2E C E b coo coor (25)
2(_v2) 2 - ,q a b

or b 2 q2

h~r C X0 E Eq K pqcoo~ coqs'9
h.(1-V) -,q a b

then
b2 a

K -x O- (26)
p,q" h2 2(1-_ 2 ) q2

-6
(the factor of 10 appears as a conversion from micro-inches to inches)
then

KOp2 -. 8835 bO,2 .8835 E 2

K2 , 2  = .2325 b s 2325 E h22t2 ~ or 2P

0o,4 = .0349 bo,4 3 .0349 E h2

2 .116 b 116 6 h2 (27)

Assuming the deflection w to be suitably represented by the series

V in !x sin2 2 fw sin ME +w sin 2

a b f 1 ' a 3,1 a (28)

The strain energy is calculated according to Eq. (13) and found to be

U - [227.92+ 2 9.59, 2 258-O* ,1 w, 1  (2)
12&2 "3,1
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Calculating T according to Eq. (16) results in

T V- f (17.484 V1 01
2 . 165 39, 2 _ fl.656

an Id using the non-dimensional buckling parameter defined as

a2

K yer 7r2D

NyTr-T - ( 17.44 W1 ,1
2÷ 11.656 w.1 2 11.656 w1 v 391

(30)
Thus the governing equation for the non-prestressed plate are

8(U.,,T) 8(U-9 T)
0 0 and - - 0 (31)

8wll 839,1

or

(455.84 + 34.968K) vl, - (258.08 + n.656K) v3.1 * 0

and

(258,08 + 11.656K) vl,1 - (1785.18 + 23.312K) v3 ,, a 0

Setting the determinant of the coefficients of these two equations
equal to zero, the conditions for a non-trivial solution gives

K2 + 98.68K + 1099.9 - 0 (32)

from which we find

K = 12.81 or - 85.87

or N a12,814 (33)
Myer a
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which agrees with the solution given by Timoshenko on p. 323 of Ref. (19).

From Eq. (16) W can be calculated and making use of the values forX
bp~q (27) is

WX 2 ~4VO30 wil+1, 2 * 3,39 w~g - 1264,28W9!1
- m,', ( + , 19, 3,+ ,12_+ .:, ,, ,"j

X 128a

(34)
then minimizing the expression U-W the following two equations are arrived
at

4 UWx- T)
a( l a) (1310.4 - 34.968K) w1, 1 - (1522.36 - 1l.656K) V3 , 1. 0

(35)

a(UW -1 T)
- (1522.36 - 11.656K) wl, 1 + (5691.96 - 23.312K) W3 ,1 = 0

OW3,1

upon setting the determinant of the coefficients equal to zero the
following quadratic equation is obtained:

K2 + 285.73 + 7568.6 n 0 (36)

yielding the solution

K a - 29.545, - 256.19

or (37)
Nye *-29.545 a 2

Thus on the basis of the Rayleigh-Ritz analysis we may conclude that
the stresses occurring in the .020 inch thick plate because of the pre-
stressing procedure will increase the buckling load approximately 130%.
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A similar set of calculations can be performed for the second .040
inch thick plate, the data for which is listed in Table 10. In this case
it is found that the prestressed plate will buckle symmetrically in three
half-waves even though the non-prestressed plate buckles anti-symnmetrically
in two half-waves.

Assuming the deflectionvw to be suitably represented by the series

w= sin *sin wsin2 w 2 sin-+ 3 sin23'xr (38)
a b b 'a 3,2 a)

the buckling load for the non-prestressed plate is found to be

N 8*3 F2D
Nyr - 8.38a- (39)

which is within 0.6% of the accepted valus listed in Reference (12).

For the prestressed plate with the same assumed deflection the
buckling load is

- 2DN r ll.63-2
a

If however, for this same prestressed plate the deflection is assumed
to be suitably represented by the series

w-sin! sin =sin = w,,3 sinwx .w 3 , 3 sin (40)
a b b a a

the buckling load for the prestressed plate is found to be

N W - 10.04 (41)
ycr a2

Thus in the case of the .040 inch plate whose data is described in
Table 10 the plate will buckle symmeirically in three half-waves at a load
19.8% above that of the non-prestressed plate.
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Similarly using the data for the .032 inch thick plate whose data
is listed in Table 12 it is found that this plate will also buckle
symmetrically into three half-waves,

For the deflection w assumsd as the series (40) the buckling load is:
N a 9.472

yer a 2(42)
ycr a

while if assumed as the anti-symmetric series (38) it is

N 11.12 ra

Thus in the case of the .032 inch plate a symmetric buckling mode
of three half-waves occurrs at a load 13% above that of the non-prestressed
plate.

SECTION VII

BUCKLING LOADS FOR PLATES WITH INITIAL IMPERFETIONS

Before proceeding to describe the experiments for the determination
of buckling loads for the non-prestressed flat plates as well as the
prestressed plates, it seems desirable to review the existing methods
for experimentally determining the buckling loads for plates with initial
imperfections.

The three most common methods for determining the buckling load from
experimental methods are the top of the knee method, the strain reversal
method, and by Southwell's plot.

In the "top of the knee method,, the buckling stress is taken as the
stress corresponding to the top of the knee of a curve of load versus
the lateral deflection. If the lateral deflection cannot be readily
measured, any other quantity that increases in substantially the saw
manner as the lateral deflections may be plotted instead. One such
quantity is, cl - C2' the difference of strains, in the direction of
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loading, on the two sides of the "buckle crest". The method is
illustrated in Fig. 9 and the buckling loads obtained by the "top
of the knee method" are indicated on the curves by small circles for
three different amounts of initial Imperfections. It should be noted
that the larger the initial imperfections the more difficult it is to
judge the "top of the knee" and consequently the buckling load.

The "strain reversal method" is best explained with the use of
Fig. 10 which shows the variation of strain, c, at opposite faces of
the plate. As in Fig. 9 the method is illustrated for three different
amount of initial deflections and the critical stresses found by this
method are indicated by small circles. The innermost curve represents
a perfect plate. The strains are elongations (or contractions) which
could be found by the application of electric strain gages on opposite
faces of the plate at one of the expected crests of the buckling mode.
Before buckling the plate is under a uniform compression and both gages
are under the same strain depending only upon the load and the Modulus
of Elasticity. At the buckling load the initially perfect plate suddenly
deforms thus adding to the compressive strain in the gage applied to
the concave face while imposing a tensile strain (thus decreasing the
compressive strain) in the gage applied to the convex face of the plate.
The critical load is based on the above behavior of the perfect plate
and is consequently defined as the load at which the extreme fibre
strain, c , on the convex side of the buckle crest stops increasing
and begini to decrease. It can be seen from Fig. 10 that again the
larger the initial imperfections the more difficult it is to choose the
critical load.

1.416

.2.2 - \ *

zz

z

0 1 0 .8 1.2 1.6 2.0 2.4 2.8

,0or ez
(Value proportional to bending strain) Oc,

Top of Knee Method Strain Reversal Method

Fig. 9 Fig. 10
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Southwelliu method has found universal acceptance in determining
the buckling load of columns but has been unsatisfactory in the case
of plates whose lateral motion is restrained at all four edges. In
brief, Southwell's method depends on the linear relationship between
the deflection of the structure and the ratio between the deflection
and load, d/P. The slope of the straight line plotted with these
coordinates in the theoretical buckling load. Southwell (8) showed
that there is a identifiable straight line for slender columns while
Donnell (9) and Hu(lO) haw shown that the linear relationship will
not exist as long as there are extensional strains present during the
buckling process. Donnell (9) has further shown that these extensional
strains do exist in the case of a simply supported plate whenever the
sum of the initial imperfection and the deflections due to the load P
are of the order of the plate thickness, as is usually the case.

Because of the relatively large initial deformations present in
the prestressed plates the three commonly used methods for experimentally
determining the buckling load mentioned above are found to be very
difficult to use. For this reason a method developed by Yoshiki (U1)
is tried in the determination of the buckling load of the plates in
this investigation.

loshiki's method is based upon the fact that after buckling the
deflection of a theoretically perfect plate is proportional to the
square of the load and therefore the load versus deflections curve is
a parabola. This parabola is shown in Fig. 9 for a plate with no initial
imperfections and it can be seen from the figure, that for plates with
initial inperfections, these curves are assMptotic at large deflections.

When the load is plotted against the square of the deflection, or
any other quantity varying in substantially the same manner, the post

1.4 buckling curve will be as straight
line intersecting the vertical axis

1.2 of the buckling load. In Fig. 31
we have plotted the same lines as

,.0( were plotted in Fig. 9 but now
(cl - c2 )2 was used as the abscissa-

.• instead of (cI - C2) A theoretical

". ,• analysis demonstrating the parabolic
post buckling behavior of clamped

.4 plates is carried out in Appendix A*

.2

0 .4 .a 1.2 16 20

(Volue proportional to bending stroin

Yoshiki's Method

Fig. U
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SECTION VIII

TESTS TO DETERMINE THE BUWKLING LOADS

Having shown the probability of raising the buckling load by
prestressing, and also that the prestressing caused no objectionable
initial deflections, a testing program was initiated for the purpose
of actually measuring the buckling load of prestressed and non-prestressed
flat plates. It was recognized that the desired buckling frame should
have the following properties:

1. The deflections at the edge of the plate should be zero.
2. The slope of the plate at the edges should be zero.
3. The stringers (side supports) should be flexible in order

that they transmit no load.
4. The load should be applied umiformly to the ends of the

plate.

The stringers designed for the testing program are shown in
Figs. 12 and 13. The plate is clamped between the cantilevered "fingers"
(shown in Fig. 13) which are formed at the end of the I ` vide roots.
Since the width to depth ratio of these thin roots is ahou, 101. the
rigidity ratio of the cantilever beams is about 400:1. As a Co1: 1 Mce
of this high "rigidity ratio" the stringers are very flexible in the
direction of the applied load and yet possesses a great deal of lateral
and rotational rigidity.

D7

General View of Buckling Jig Detailed View of Stringers

Fig. 12 Fig. 13
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The flexibility of the cantilevered "fingers" reduces to a
Minik; the applied load being transmitted by the stringers while their
lateral rigidity will produce almost zero displacement. To produce
the condition that the edges of the plate win have nearly zero slopes,
a four bar linkage was designed which is shown in Figs. 12 and 14.
The two stringers are attached to the rod end bearings at the ends of
each pair of rods shown in Fig. 14 in a manner as shown In Fig. 12.
Thus they complete two similar parallelograms each of which has a
cooresponding side along a common line. By thus restraining one side
to a common line the opposite sides, which are the stringers, are
restrained so as to always be parallel to each other although there is
no other restriction on their relation rotational motion.

In order to ensure that the
four bar linkage did not restrain
the movement of the plate in the
direction perpendicular to the
applied load (the x-direction as
defined by Fig. 1) electric strain
gages were placed on the plate
to measure these inplane strains.
The test showed that the linkage
offered no restraint to the
expansion (or contraction) of the
plate.

The actual testing of prestressed
plates was carried out in the
following manner:

The side edges were clamped
between the stringers 'nd the
plate flattened by moments applied
to the stringers by means of monkey
wrenches. The four bar linkage

Detailed View of Four Bar Linkage was then attached to the stringers
thus forcing the stringers and

Fig. 14 plate to lie in a plane after
removing the wrenches. The ends

of the plate were then inserted between the steel angles, attached to
the end plates, and firmly bolted into position. The turnbuckle connecting
the end plates, was then tightened until the end plates were parallel.

The lower end plate rested on the base of the testing machine while
the upper end plate was loaded through a round swivel block attached to
the measuring head of the machine. The swivel head was adjusted so as
to be parallel to the upper base plate of the testing jig.
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It was found that if the steel angles (see Fig. 12) were clamped
very tightly to the ends of the plate the friction between the angles
and the plate would transmit the load uniformly from the end plates to
the plate under test. This information enabled us to forego any more
elaborate method of transmitting the load to the plate.

The plate was loaded to about one half the expected buckling load
and then unloaded to twenty pounds to insure the proper seating of the
plate in the testing jig. The strain gage indicator was then zeroed
and the test begun. The two sets of strain gages were read alternately
at fifty pound loading increments.

The loads measured during the tests were the total loads applied
to the testing jig, that is, the sum of the loads applied to the free
plate, the part of the plate supported between the stringers, and the
stringers themselves. This latter part of the load should be negligible
as the stringers were designed to be flexible in the direction of
application of the load. The load going down the supported edge strips
were, however, not negligible and were found both experimentally and
analytically.

The experimental investigation of the load carried ty the supported
edge strip was carried out by testing .040 in. non-prestressed flat
plates of the same dimensions as the prestressed plates but with four
different widths of supported strips. The normal testing procedure
had a one inch edge strip supported by the stringers while, in addition,
for calibration purposes, tests were rim with 1/2 in., 3/4 in., and
1 1/4 in. strips supported by the stringers.

In one series of tests the plates were cut to size so as to have
a 1 1/4 inch strip supported by each stringer and then repeatedly trimmed
down in width so as to have different widths of supported edge strips.
The results of these tests are shown in Table 15.

In some cases, it was observed that the buckling lead for plates
with stringer grip of 1 1/4 in. buckled at a lower load than plates with
1 in. grip. The cause of these seemingly peculiar results is probably
due to the variation of boundary conditions, with the width of the
stringer grip, and with each test.

In another series of tests the plates were not retested but instead
the plates were originally out to sizes for testing the four different
widths, 1/2, 3/4, 1, and 1 1/4 inches. The results of these tests are
shown in Tables 16, 17, 18, and 19.

WADC TR 54-8 26



The results of Tables 16, 17, 18, and 19 are shown graphically in
Fig. 15. Each buckling load (found by Yoshiki's method) is shown in
addition to their averages shown for each initial radius of curvature.
Two curves marked experimental are shown. They are straight lines
drawn through the experimental values by the method of least squares.
For one line, indicated by "Experimental (1/2 - 1 1/4)", a least square
"average" is drawn through all the points; while for the other, indicated
by "Experimental (3/4 - 1 1/4)", the points for 1/2 inch width of plate
supported between each of the stringers are omitted. The results of
the 1/2 inch supported width tests are omitted in this one case since
it is felt that the clamping is too weak to approximate the clamped edge
condition. It can be seen in Fig. 15 that the straight line found
using the 1/2 inch supported width gives a "zero width" buckling load
about 115 lbs. lower than that found omitting the 1/2 inch width and about
70 lbs. less than that for the ideal theoretical plate.

Since it can be seen that the
line representing the buckling

1000 loads of the theoretical plate
Indicates Aceroge Experimental Valus falls well within all the experimental

90 • points (except perhaps the ones
tested with 1/2 inch supported

Boo _ edges) this"theoreticalt line will
o / be used for calibration purposes.

_j 700 The line labeled theoretical
l~xpednantat 13M- 114 is obtained by assuming that

_00 supported edge strips undergo the
same total compression as an ideal

(1 '1 ...... ,plate would at the inception of
500 buckling. Then the load per unit

length carried by the edge strip
400 _will be equal to the buckling load

0 I14 112 314 l 11/4 per unit length of the plate.
Width ao Supported Strip, Inches S. Levy (12) has found this for

aspect ratio 3:2 to be:

INY -8.33-r2
Stringer Calibration Tests a

(.040 Aluminum Plates) where h-.040,aw99 -2.1
Fig. 15 6hr 00 a=9 I

and E - 10.5 x 106 psi

N a 63.2 lb./in.
y
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Thus the buckling load for our plate with a = 9 in. is 569 lbs.
and for strips of the widths tested are shown in Table 20. Table 20
is calculated by multiplying the buckling load per unit length by the
width of the supported strip.

Now, if each of these values are added to the buckling load of the
theoretical plate (569 lbs.) the values of the buckling loads for
theoretical plates with the various supported widths (stringer grips)
are obtained. These are the values that determine the plot labeled
"theoretical".

Very close agreement between the "theoretical" and the experimental
curv can not be expected since the calculations af the "theoretical"
cur"e in no way takes into account the variation 3f degree of clamping
with the different widths of stringer grips; and in an actual plate the
end shortening will be greater than in the theoretical case. Therefore
a larger load will be carried by the supported strips than originally
computed. Moreover, no account has been taken of load carried by the
stringers. From these considerations, the experimentally determined
buckling loads will be larger than those calculated from theory.

Nevertheless, in spite of those objections, the plot of Fig. 15
still gives a reasonable indication of the degree of clamping that is
attained by the buckling jig.

Having shown that, after accounting for the load transmitted by
the strip of plate clamped between the stringers, the buckling loads are
close to the values computed from the accepted theory, the program of
testing prestressed plates was begun and is described in the following
paragraphs.

Because of the unsymmetrical buckling of prestressed plate two sets
of strain gages were used in order to increase the likliehood of the gages
being at the crest of the buckling modes.

The results of testing of non-prestressed flat plates were very
consistent and the results of a representative test is shown in Fig. 16.
Both (Ci-c 2 ) and (CI-C 2 )2 are plotted and since these are proportional

to deflection and the square of deflection respectively the methods
previously described may be used in determining the buckling load. The
plate shown is numbered F40-1, 5-U1 where F indicates that it was an
non-prestressed flat plate (prestressed plates are indicated by the letter
C), the first set of numbers indicates the plate thickness to be .040
inches, the second set of numbers indicates that the aspect ratio was
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21 1.5, while the third series of
numbers indicates that this was the
eleventh plate of this type tested.

The plots of the test data
of prestressed flat plates were
of three general types shown in
Figs. 17j, 189, and 19. The curves
of Fig. 17 are what will be called

____the "normal" type, that is, they
are of the type expected theoretically.
The curves of Fig. 18 will be called

SrE)the "double parabola" type in that
the post buckling behavior is
characterized by two parabolas,
instead of one. Thus if plates
of the "double parabola" type ar
analyzed by means of the (cj-c)I

6 .2 5 plot there will result two different
(C,-z2)xOn/in . e, ef.o., bu buckling loads corresponding to

the two parabolic post buckling
behaviors of the plate. The

Typical Load-Deflection Diagram significance of these two parabolas
for Ordinary Flat Plate is not obvious, and is a puzzling

Fig. 16 characteristic of prestressed plates.
The curves of Fig. 19 will be

44 called the "mode Jump" type, that
/ is, they occur when the plate

buckling form changes suddenly during
38 the test. The change is from two

half-waves to three half-waves
Ch.-•.'::; ••_ and is sometimes so sudden as to

32 _ _ be accompanied by a loud popping
7E KEC) sound.

26, Flat plates with an aspect
9 (length to width) ratio of 1.5

___should, according to theory, buckle
-___-___-in. two half waves. It is felt

R •that initial imperfections are a
< Z major cause for the formation of

4 threewave form. If the plates
had longitudinal initial deflections
of the form shown in Fig. 20a
which is shown to be the case for
prestressed plates (see Fig. 20),

_ _ _the. plpte could be forced to bucte
2 4 6 into three instead of two half

(,-E)sx tO', in./inn a (f,- E) 0 1 Wm'waves,

"Normal, Type Buckling of
Prestressed Plate,

Fig. 17
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46 (- (el - IE) ... 120

Chonn.l

A I /

34 - -, -2E,34

*.,e • A 
• 

Ch n I --I

A 26-_eA '1A/ ~_
28 Afl 

2 Channel 2
hC 

6
*Cn*...

/2 A4

.0 ----

16 ~ -

10 - - -_0_______-

16 2 32 0 16 24
(e,-*')xlO ,ifl./in. 6 *e, ) . 10 inin. 8 4(6,-4 2 IOin/In.

"Double Parabola" Type of Buckling "Mode Jump" Type of Buckling
of Prestressed Plate of Prestressed Plate

Fig. 18 Fig. 19

The hypothesis can be visualized with the help of Fig. 20. If the
initial deflections of one half wave shown in Fig. 20a are added to the
usual buckling form of two waves shown in Fig. 20b, an unsymmetrical two
wave form, shown in Fig. 20o, results. This wave form is actually a
characteristic of the prestressed plates. It is possible that the longer
half wave of Fig. 20c becomes unstable and this buckles into two more
waves giving a total of three half waves shown in Fig. 20:.

(a) (b) (c) (d)

Effect of Initial Deflections on Buckling Mode

Fig. 20
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The above hypothesis, although conjectural, is somewhat substantiated
by experience with non-prestressed flat plates. During the testing of
non-prestressed flat plates it was observed that the plates "popping"
into three waves were those with the largest initial deformations in the
form of one wave. After noticing this the testing of non-prestressed
plates were restricted to those that appeared, to the naked eye, to be
flat. Thereafter, no trouble was encountered with this "popping" phenomenon.
Unfortunately, initial deflections are inherent in the prestressing process,
thus necessitating a larger number of tests to compensate for the tests
discarded because of "popping".

Another possibility for explaining this "popping" is the formation
of inplane stresses that would be of such a nature as to cause the plate
to buckle into three half-waves. The probability of this hypothesis being
a major factor is strengthened considerably by the results of the Rayleigh-
Ritz analises shown in the previous section.

It was shown that for some stress distributions occurring during the
prestressing process (particularly that found by the experiments performed
on the second .040 inch thick Aluminum plate) the plate will buckle into
three half-waves. In some plates (particularly the .020 inch thick aluminum
plate) the energy level at which the plate will buckle is very nearly the
same for the symmetric or antisymmetric modes of failure. It was also shown
that there is a wide scattering in the stress distribution found experimentally.
Since there will also be some variation in the degree of clamping at the
boundaries and some non-homogeneity of the plate and also since the piestress
distribution will vary somewhat upon deflecting under the applied buckling
load it is quite likely that in some cases a plate will buckle in two half-
waves while in other cases an apparently similar plate will buckle in three
half-waves.

The results of buckling tests performed on non-prestressed flat plates
of .040, .032, and .051 inch thickness are shown in Tables 18, 21, and 22,
respectivley. The results of buckling tests performed on prestressed plates
of thicknesses of .040, .032, .051 inches are shown in Tables 23, 24, and
25, respectively.

The results of the buckling tests performed on non-prestressed flat
plates of .032 and .051 inch thicknesses which were listed in Tables 21 and
22 are shown graphically in Figures 21 and 22 respectively. These figures
are similar to Fig. 15 which showed the tests of .040 non-prestressed flat
plate tests for calibration purposes.
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Since the calibration tests showed that very good results were obtained
by assuming that the supported edge strips undergo the same total compression
as an ideal plate would, the calibration tests were dispensed with in the
case of plates of .032 and .051 incI: thicknesses.

500 ___

1800

400C
400 -- 1400

I30 0.•

300000

Soo--
-J=

m _ _60

1oo - -- 400

aoo

0 /4 1/2 3/4 1 1 1/40
Width of Supported Strip,inches Width of Supported Strip, Inches

.032 Ordinary Flat Plate Tests .051 Ordinary Flat Plate Tests

Fig. 21 Fig. 22

The theoretical buckling loads of .032 and .051 inch thick non-prestressed
flat plates with different widths of supported edge strips are shown in
Figs. 21 and 22 along with the experimentally determined values (by Yoshiki's
method). The theory indicates that for .032, .040, and .051 inch plates the
load supported by the 1 inch supported strips at both edges will be 63, 126,
and 262 pounds respectively.

Making use of these values and subtracting them from the loads listed
in Tables 23, 24, and 25 ( and shown graphically Ih Figs. 23, 24, and 25)
the net buckling loads were determined. The average experimental "total"
buckling loads are listed in Tables 26, X7, and 28 for the .040, .032, and
.051 inch thick prestressed plates respectively while the net loads are listed
in Table 29,
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2400- _ _ _

-0fndiaiduol BuckInOg LOad.
• a-hOne of teo Buckling Loads

2200 'a, eoch plate .1th 0 Oaub6e
Parbola buckling pottler 

't01600C
X-A-eage Suacling Load.

2000- - -

1800

12o00

.1600

IOG- _____OO0 Sooo•_ too

O O r2 C -o o. ..

6000

400- 100

5 6 7 9 10 5 6 7 a
Initial Radiu,%,Inches

Initial Radius, Inches

Buckling Loads of .040 Prestressed Buckling Loads of .032 Prestressed
Flat Plates Flat Plates

Fig. 23 Fig. 24

From the data listed in the
- above tables, it is felt that

2800 -,lndlduaI Buchling Load,

...................... Yoshiki's method, though convenient
Ia, -ooh ,aote. I11larofal oto use for non-frestressed plates,

2400• 8-do............ may not be applicable to the pre-

stressed plates as indicated by
2000 the occurrence of double parabola

in the plate. As a result, the
6 0oC0- top of the knee method was used.

The buckling loads thus determined
__indicate the loads at which the

. 120C --

deflections suddenly become large.
80_ The net loads supported by the

"free, plate are listed in Table 29
" "00 together with their percentage

__o -increases over the buckling loads
of the corresponding non-prestressed

0 7 plates, both measured by the top
Radius, Inche. of knee method. For purpose of

comparison, the values determined
by Yoshiki's method are given in

Buckling Loads of .051 Prestressed the parentheses after the net
Flat Plates buckling loads in Table 29.

Fig. 25
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SECTION IX

Remarks on the "Buckling" Criteria

The current methods of testing make use of the form of the Load-strain
diagram rather than the actual values of the deflections in the diagram,
These methods all have as a basis the load-strain relations existing in a
theoretically flat plate which does not deflect until the buckling load is
reached at which point the deflections suddenly occurs. The actual plate
with initial deflections, does not exhibit this sudden increase in deflection
and in fact in some cases the evidences of the behavior of the ideal plate
is indiscernable. As was mentioned in the Introduction, a factor of major
significance is the ratio of plate deflection to applied load. It can be
seen from Fig. 26 that a lower value of this ratio does not necessarily
occur with a higher buckling load of the equivalent ideal plate. In this
figure two Load - deflection diagrams are shown along with their extensions
(shown by dashed lines) which would represent the diagram of the equivalent
ideal plate. The intersection of this dashed line with the ordinate is
the buckling load which all of the measuring methods attempt to find. It can
be seen, however, that in the case shown the plate with the highest
theoretical buckling load also has the largest deflection to load ratio,
a distinctly undesirable characteristic.

Because of the relatively large deflections inherent in prestressed
plates the importance of low values of Deflection to Load ratios is
especially important. It is felt that the "buckling load" in such a case
should be defined as the load at which the maximum deflection in the plate
reaches a certain prescribed value. Further research on prestressed plates
with this new "buckling" criteria would seem to be of great value.

00y
_J

Deflection

Illustration of Buckling Criterias

Fig. 26
WADC TR 54-8 34



SECTICK X

FORMULATION OF THE PROBLEM

The theoretical treatment of the problem consists or two parts.
First, it is necessary to find the inplane stresses indnced in the plate
due to the clamping of a curved plate into a flat frame. Next, with
these inplane stresses determined, the buckling load will be calculated
for a flat plate with such initial stresses.

The first problem can be formulated by considering the process of
clamping the curved plate into a flat frame to occur in three steps.
First, the cylindrically curved plate is bent into an identically flat
form by pure moments applied at the edge. Secondly, the edges of the
plate in this identically flat form, will be clamped. Note that the
clamping will induce no additional deflections or stresses.

Thirdly, the pure moments applied in step one will be removed by
the application of equal and opposite moments thus leaving the clamping
action at the edges as the only restraining force on the plate.

It may be pointed out that initial bending stresses do not affect
the buckling load of plates but inplane (or membrane) stresses do. Since
the first step produces only pure bending stresses and the second step
induces no stresses in the plate, our analysis will be concerned exclusively
in analyzing the deflections and stresses induced by the loadings of the
third step. This analysis will yield the deflections and inplane stressesý,,"..
ocurring when a cylindrically curved plate is clamped into a flat frame.

The problem of determining the buckling load for a prestressed flat
plate problem can be solved by the use of the Rayleigh-Ritz energy method.
In using the energy method, it will be assumed that when buckling occurs
these inplane stresses will remain unchanged.

SECTION XI

BENDING OF A CYLINDRICALLY CURVED PLATE INTO FLAT FORM

If the curved plate originally is in the form of a cylindrical surface,
it is possible to bend it into an identically flat form by inextensional
bending. This is because both the cylindrical and flat surfaces are
developable surfaces. The problem of bending one developable surface into
another one can be found in many texts on Elasticity, for example, ref. 13.
The edge moments necessary to bend such a plate (Fig. 27) are

M =D(- +v- (43)x R R

M D1 +,1
M D(.- Mv)(4

y R
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where 1 and are the changes in curvature* In our case 0 and
R x R yR

1 1

Ry R
Mx =v D/R (45)

11 = DA(46)

In order to apply equal and opposite moments to the plate when the
plate has been clamped at the edges, it is necessary to represent these
moments in the form of equal and opposite pressures applied near the edges
of the plate (see Fig. 28). This can be done by expressing the pressure
distributions in terms of Dirac delte- functions (14). According to usual
notation for these delta functioa3, ((x-)c) indicates the delta function
which intersects the abscissa at x= •. J indicates the first derivation
of C.

M o

Fig.> V' byPesr ope

Fig 28

W5-

N N

Coordinate System Representation of Edge Moments
Fig. 27 by Pressure Couples

Fig. 28
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The pressure distributions J(x) and J (y) must have the following
properties:

f "I(y-c) dy = 2(y-b+r) dy 0 (47)

0 0

5 ,l(xX-) dx a 2 (x-a+c) dx" 0

o 0

b b

j(y-.c) S'1 (y-r) dy=- ý(y-b+c) Jt 2 (y-b+r) dy -

0 0

(x-c) ( dx-- - bx(x-a+J) 2 (x-a+c) dx M (48)

0 0

In addition, the derivative of the Dirac delta function has the
following useful integration properties:

b

5 f(y) J 1 (y-c) dy =Mx f(+o) 2+ r -o)(c)

0

f f(y) o' 2 (y-b+c) dy- M fn(b-r+O) + ffCb-c-O) M ft

0 2

(49)

f ) I(x-c) dx = 2O ,(-o) I ()

0

f f(X) 41 (x-a+c) dx f Is~ 2arO + f '(a-c)

0 5
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This delta function pressure distribution can be written in terms
of a Fourier series and the Fourier coefficients easily found by using
the above integration properties of Dirac delta functions. Let

,/•(x) - (X..C) + 2 (X-a+c)

(Y)- (,1 (y-c) + 4 2 (y-4)

Smay be written as Fourier series by notin g that

W(x)-a + Za coo--+ Zbm sin-
2 a a (50)

a0

(Y) =-- + X 0n coo y + Zd. sin "V

2 b b

where

a. w 2 W xcoosW dx
a a

0

abm -2__ f 4'(x) si W' dx (51)

0

c = 2_. fi(y) coo b dy
Cn b b

0
b

d n. f_ J" (Y) sinm~ dy

0

Making use of the integration properties of 9 the Fourier coefficients
(51), may be evaluated.
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0aitxs cos Zl dx+ fi92 (xa+c) coo l dx
aa a a a

2FMy Esi wr0 r i

L a a y a ~aJ

am= 0 (52)

Similarly,

e n"0

bm~ ~ ~ a__ xc snW x+2(xac i ~ dxaa a a

0 0

. 2a M'• M .0.-'O _-M MErCo. ra~aa X

m• Cos m

b - 0 for evenm
m

an b 4=r C for Modd m

a

2

similarly

d a 0 for even n

d -o y for oddn (53)
n b 2
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Substituting (50) and (53) in eqs. (50) we find

J'(x) - r m sinO--•

a m=l,3,5 a

(54)

M (y).1 n sin EI
b n=1,3,5 b

We will now proceed to use the above results in determining the
Fourier series representing the applied pressure, p , which in turn
approximates the effect of a moment equal and opposite to the moments
M and M required to open the plate to an identically flat form.
x y

By definition,

pe - $'(x) + Si'(y) (55)

Substituting eqs. (45), (46), and (54) in (55), we find

00 m Mx Vdwr
p i47r E-si - + E -sin-amI,3,5 a a n=l,3,5 b2 b

(56)

Since it is more convenient in thi later analyis to use a double
Fourier series, we shall expand 40M./a and 4r / into sine series as

follows:

a r, e sin sTY
2 sa s=l b

(57)

2 2 f sin -
b r=I r a
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It is easy to verify that

16M
8 =_ I for odd a
s 2

a a

e 0 for even s

16Mvfr 1 for odd r

b2 r

fr 0 for even r (58)

Hence,

r-1,3,5 s=a,3,5 a rb a b

(59)

In addition to the above pressure equivalent to the applied forces
(hereafter referred to simply as the equivalent pressure), there will also
be a clamping pressure, p , which will be the equivalent of the moments
ocmcing at the edges of ghe clamped plate. This pressuwe will be expanded
in a trigonometric series containing arbitrary coefficients vhich will be
determined by the use of the boundary conditions due to the clamping of
the edge.

The clamping effect will be replaced by equivalent edge moments Mx

and my (at x = 0, a and y 0, b respectively). Using Eq. (56)

P z -- I sin +P 0  ~2r-1,3,5 a a 5=1,3,5 b b
(60)

a and my may be expressed by a trigonometric series in terms of arbitrary

coefficients Kr and To

OVA 2 K sin
ir ral,3,5 a

3yMy~ T sin~
yr s"l,3,5 b (61)
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combining Eqs. (60) and (61) gives the equivalent clamping pressure

0_ W T K__
Pc a 16M Z E (--2r + v-a)sin-El sin~

y rl1,3,5 s-1,3,5 ab a b

(62)

The addition of the equivalent applied pressure, p 9, and the
equivalent clamping pressure, pc, will be called the total applied
pressure, PTO Thus,

p a Pe + PCe a 161't., 1: Z• (Ts + !)+ v.(r )s:•__..n
pr1,3,5 s-l,3,5 a a a r a b

(63)
To simplify the writing, let

PT Z Z" Pros sin nX sin 'ry (64)
rl,3,5 s=l,3,1 a b

where

prsn16Y ( 'i+a1D (T+'7+V
[a~ 2 a6,j aT [a} (K.~ 7 - aT.) -7 (Kr +

(65)
since MY=D

R

It should be pointed out that (54) are divergent series and conse-
quently Eqs. (59), (60), (62), and (65) consist of divergent series. The
paradox of obtaining a convergent solution to an equilibrium problem under
the action of a load represented by a divergent series has already been
noted by S. Levy (15).

The explanation of this paradox would require further mathematical
research. It can be shown that, for instance, if the divergent represen-
tation (Eq. 65) for the applied pressure is summed according to the Borel
summation (one of many types of summations useful in suvming divergent
series) it is indeed found to be zero at, for instance, the center of the
plate, as it should be. The physical meaning behind such a means for
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summing divergent series seems rather nebulous and no concrete conclusions
can be drawn from such a summation yielding the desired results.

The view that his paradox is not an accidental one is strengthened
considerably by noting its occurrence in a rather simple linear problem.

The pure bending of a simply supported beam of length "a" by equal
moments, M applied at its ends can be solved by replacing these moments

by equivalent pressures exactly in the same manner as has been done in the
previous section for the clamped plate. Solving this problem by the method
under question will lead to the exact solution.

Using equation (54) the moment equivalent pressure may be written
as

-~ M X-Msipeq a2 y M-losina v=Il3,5.• a

The equilibrium equation for a beam under a pressure load is:

d4w

For our problem the boundary conditions at x - 0 and x a a are

2
w 0 and 0

dx

These boundary conditions are satisfied termise by assuming the
deflection in the four of the following infinite series:

00
V E wM sin x

awl a

Substituting the above two infinite series into the equilibrium
equation, we obtain

E E w ) sin -- 4 y E m sin
ma a a m1,3,5,.. a
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Equating coefficients we find

V -

or

E=1,3,5, . . m3 a

For purposes of comparison we find

2 ~M .o10IT
= -4 Z -sin

dx2 ir EI m.1,3,5, . . m a

Making use of the following formula No. 808 listed by B.O. Pierce (17):

y14- sin---
rf=l,3,5, . . m a

we find
d2 M
dw = -z

dx El

which is well known to be the exact solution for the second derivative
of a beam bent by pure moments.

The success of using a divergent representation for the pressure,
which arises from the use of the Dirac delta function, seems to be hinged
upon the order of the differential equation. Note that if the above equation
were a first order differential equation, e.g.

El -v

dx

the solution for w would then be expressed by a divergent series and the
solution could not be correct.
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SECTION XII

THE DETERMINATION OF THE INPLANE STRESSES

Next, we shall calculate the inplane stresses in a flat plate clamped
at four edges and under some distribution of lateral pressure which is
equivalent to the edge moments applied. In this case, the von Karman's
large deflection equations for thin plates (19) will be used. They are

(,f7F2W 2 2 2 2 82 (66)
D V 4w PT + 7-- x2 =y2 - 2(6

2 2 2-

My ax 2 ;2-%2 )3 (67)

where the pressure PT is the equivalent pressure derived in the previous

section and the stress function, F, is defined in terms of the inplane
stresses by the following relations:

d 12 F a 2 8 2

X0 d 82 'Xy0 - x8y

The boundary conditions on the deflection, v, are as follows:

at x= O,a w= O, 8w 0
8x

(68)
aty* Ob w PO, 0

ay

The boundary conditions on the stress function F are such that

1. The resultant load (at any cross section of the plate) must
be zero in the x-direction and in the y-direction.

2. The boundaries of the plate must remain straight.

(69)
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The deflection, w, and the stress function, F, will be assumed in
the form of the following trigonometric series with arbitrary coefficients:

V a E E W M sin- sin (70)
m-l n-i a b

F- n 2 , b coo coo (71)
pm0 q=O pvq a b

Note that the pressure pT has already been expanded in the form of a

Fourier series, namely,

pi Z M E Pro sin - sin (72)
r=1,3,5 s=1,3,5 a b

To satisfy the differential equations, the coefficients bppq and

w Mn are to be determined as follows. We first substitute (70) and (71)

into equation (67). By equating the coefficients of like terms, b pq can

be expressed in terms of wmn in the following form.

E 9
bpq 2 b 2 2a2 Z Bi (73)

a b
where Bi are functions of vwnn and are listed in Appendix B. Next,

substitute (70), (71), (72) into equation (66) and equate the coefficients
of like terms. Since bp~q are now functions of wmn, we obtain

D, ~2 7r 2 7+S 72 2 h~4 9 (4Dr,s(r 2 + s2a22•h Z Ai =Pr's (74)

a +b aR i=l8

WADO TR 54-8 46



where Ai are function of wm,n and are listed in Appendix C. The derivation

is the same as that carried out by Levy (20). Note that In this problem
due to symmetry the coefficients prs and wm,n are restricted to odd

subscripts only. Because of this, it is found that b are restricted
to even subscripts only. p,q

Before we attempt to carry out the solution of Wmn let us examine
the boundary conditions.

SIt is obvious that the assumed series, (70), is termwise identically
zero at x 0 0, x a a, y 0 0, and y = b; hence the first set of'the boundary
conditions on w is satisfied. Also

-= . Zmu cos sin nlr

8x a m=l n'l mn a b

and

- - n. nu sin -x cos wr
8y b uwln=l m,n a b

To satisfy the conditions = Oat x - 0 and at x - s, we must have
6x

Za ,ziJ n3i m •' in b o

X Z m(-l) ,n sin w 0

a M=l n-l b

or

Z mu 0
Mal

Z m(-l)m n o (75)
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The conditions of zero slope at the edges y - 0, b lead to similar
equations

Oe

nZ nWmn a 0

Sn(-I) n win,n -o (76)
n-l

The two relations in (75) and also those in (76) become the same

if m and n are either odd or even.

In our problem, m and n must be odd, the boundary conditions of
zero slope therefore lead to the following requirements on the deflection
coefficients

@0

Z m 0m~n = o (77)
m=1,3,5

Z n w M 0 (78)
n=l,3,5 mn

Now let us examine the boumdary conditions, (69).

The first condition may be shown to be satisfied in the following
manner. Defining the load in the plane of the plate as px in the x-

direction and p. in the y-direction. Then
b

r1= ,f h dXOdy
0

where h is the thickness of the plate and is a constant. But

82
=--2

Then b

p 2F r O)F OF
px h2 dy- hML

WA Ty5b 4y=O
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Now,

0@ -
Fm E Z bp~ coo~ coo~B

3i=0 qO P9q a b

therefore Px " 0 (79)

Proceeding in a similar fashion, we finda b
p,-h F dx. h -'o (80)

o 0

The second boundary condition can be shown to be satisfied as follows.
Displacement of edges in x-direction.

,r_ 1 w x (81)
2 Ox

0

Displacement of edges in the y-direction

ba 2Ow dy (82)JY=Y -2 By.

00

where r- and & y are the inplane strain components which may be written

in terms of the stress function as follows

CxI (•-vS•)

(83)

EOx Oy
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Substituting the expressions for w and F into the above relations
and then combining terms, we find finally

72 2 2
" ,E z M a

8b u,.l na1l~

It is evident that these relations are independent of x and y and
consequently the conditions of straight edges are satisfied. Since the
detail of calculation is not obvious and is not included in Levy's reports,
it is included in Appendix D,

Having examined the boundary conditions, let us now proceed to solve
for the coefficients w,,n,. Since the problem was set up in a manner

analogous to that of Levy md Greenman (21), much of the numerical work
done by them may be used in this investigation. First, let us express
the coefficients b in terms of win,n* This is listed in Table 30.

pl,q
Next, let us substitute bppq in terms of wmgn and Prs as given by (65)

into (74). We obtain

w,,lA - (.089783 + .011057K 1 9 + .0826T,) a2/R - 3

w,, -a (.0049583 + .0027683K1 + .0065702T3) a /2 / - D2/h3

wi,/- (.0056107 + .00025863K 3 + .0055245T1 ) /Rh- DA3

2 ÷3v3,Ai (.0011085 O .00040949K, + "0029158T)a/R- D A

v1,5A a (.0010103 + .000778637K.1 + *0011198T 5) a 
2/it DAi3

A,, w (.0012757. 000035632K5 + .0012685T 1 ) a 2 - D6h 3
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a,1Aim (.00047166 .o0000094367 + .oo47031T) a/A - D7A

u9,1Ai = (.o00oo32; + .0000034778K + .oo02 o87T ) a2 /iu -W n/
, (.001226; + .000347N + .000o2228T) a2 / - D 3

w,3,1/ A (.o00007433 + . o000000803-6K 13 + .00o004372T) A /m - D10a/ 3

5 ,A/ - (.0ooo048506 + .0000004538 1 5 + .oooo4S475T) a2/mi - /

V,,3A - (.00034197 + .00008229015 + .00oo 7655T3 ) a /2 - D1A/h3

v *,,./. (.00013996 + .000024629X7 + .000409323T 3) a2/rh -_ D13A3

w,, a = (.000069267 + .oooo0 957 8N + .00020462T) a2 /Rh -D, /
3•4!

vwl, 3Ai- (.000038908 + 00000A4 2921  + .00011564T 3) a/2RAh D- 5

viWA =(.000023969 + *OOOOO2312 3 K13 + .000M7131,6T 3 a /Rh -

v3, - (.00033873 + .00028518K 3 + 0012183T 5  a 2/]R - D 1A'3

w5,5/h a (.00014365 + .000088453K 5 + oo006298lT5 ) a2/F& - D18Ai

w.7,5A - (G000068202 + .000031922K7 + .00031821T5 ) a2 /Bjh _-jqh

wgA= (.00036358 + .00 00 1 3 59 5K9 + O0007424T 5 ) a2/Rh -D20h
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v11,95 A = (.000021305 + .0000066o0o K + .00010352T 5 ) a 2 Rh - D2 1 A3

v13, 51 (.000013438 + .0000035555K"3 + .000065824T5 ) a2/Rh - D22/h3

'1,7A i (.ooo35647 + ooo3ll4K + .00031659T7 ) a2/ith - D23/h3

v 3, 7 /h - (.0001314 + .000170/7K3 + .0005202oT 7) a2/ - DlhA3

w5 ,7A•. (.00006837• + .000073798K5 + .00037533T 7 ) a2/M _ D25A- 3

"7,7Ai (.00003739o4 .000032236oo + .00022953T 7 ) a2I -

wg, 7 Ah - (.000021690 + .000015287K9 + .ooo13994 7) _2 7R -

w11,7•l' (.00013382 + .o000079213Kl + .000088632T 7 ) a2/Rh - D2sA3

wt9/h- (.000164988 + .ooM5166 K, .+oo199ST9 ) a2/Rh -_D2A

V3,9/' , (°000061214 + .00010253K3 + .00024334T9 ) a2/Rh - D3 0/h3

59,9/h - (.000035683 + .000055796K 5 + .000220a7T 9 ) a2/Rh -D 3 1/h3

w7 ,9 ,/ = (.000021786 + . 0 0 00 2 87 3'7K,7 + .0OO15914T 9 ) a2/Rlh -D 3 2 /h 3

w9,/ n G(°000013684 + . 00015167,9 + .00010799T 9 ) a//Rh D-3

' 13,7/A - (.000008722+ + .000004o368K13 .+000058668T7) a 2 h

wii,9 = (.0000089101 + .0000084230K11 + .000073302T 9) a2/Rh
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v13 , 9/h- (=°000060254 + o000004940uK1 3 + .000050810T9) a2/lh

w1,,,A = (.000089546 + .000084569TK + .oooo5/42T) a•,,

w33 ,.n - (.000032830 + .000064388K3 + .00012504Tol) a /Ah

v 5 ,Ai - (.000020208 + .000040889K 5 + .00013233T1 1 ) a2 /Rh

7,n/A - (.000013327 + .00002/022'7 + .00010885T1 1 ) a2/1h

wgn/h= (.0000089504 + .000013970•K•9 + .000081382TJ) a2/Rh

w=,,,A- (.0000061323 + .000008370oK1 . + .0000591,48T) a2 /Rh

S,,,• A., = (.0000043047 + .000005113oK 13 + .000043024To,) a /'Rh

,,,1 3,/ . (.00005395. + . 000051770K, + .000028355T13 ) /

3,1 3A/ = (.000019498 + .000042391K3 + .00006954T1 3 ) a2 /1h

w5, .v/ - (.000012288 + .000029922K5 + .00008194T13 ) a,/1&

w7,13 • = (.ooooo85232 + .0000194691 .+o000074644713) a2/1&

w, 13Ai = (.0000060332 + .000012306K 9 + .000060659T1 3 ) a2/m

WUU, 3 /h G0000043226 T+ 0000077975Ku + ooo46979Tl 3 ) a52 /
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' 13,13/h (.0000031436 + -0000050327K13 .00 35847 1 3 ) ~~

(85)

where the expressions D1 , D2 , . . . ,D are given in Table 31, with

the assumption that the non-linear terms not involving Wl, 1, Wl, 3 , V3 91,:
w3t3, W.93 and Wv I are negligible as compared to terms involving only

these six terms. Table 31 should be read in such a manner that DI a 1.451
3 2w 2

"V,1 - .972 v, 1 1W,3 - .1920 wl, 1 w3 ,1 ` . ..

In order to satisfy the boundary conditions (68) on the slope of the
edges, equations (85) are substituted in equations (77) and (78). The
resulting equations may be written in matrix notation as follows:

2 [AiFKj] a2 [Fijh Cij

_Rh IRhh

where the matrix£fij is given in Table 32 partitioned so that

A-

and
K1  .115376

K3  -. 01M2713
-. 00420168

K5  -,00194778
K 7  -. 0010647
1- F -000064353

-. 00041703

K1 -. 120621

K13 -. 0123367
L. -. 00395848

-. 0018"93

-,000979049
-. 000586332

S-.000376233
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T1

T3

T5

K j T7

T9

Til

T1 3  (86)

and C0 (i - 1 to 14) are non-linear functions of wi,n as listed in

Table 33. Table 33 should be read in such a manner that Ci = 1.3703 2 __ 2
wl, 1  + .298 Wl, 3 2 ,1 - .o 1 w 1,i w3 .1 +..

With the non-linear terms not involving wl,, w,3, w3,, 1 , w3,3,

W1 , 5 , w5 ,I neglected the problem can be solved as follows. First, we

note that equations (86) are linear equations in terms of the unknowns
KJ. It is therefore possible to solve these equations for K in terms

of the non-linear functions of wm,n. In matrix form, we have

2 2 A •F] Fi_ t

I- EKjJ - 1 EAia[friJ + ijia4 ] (87)
-R

where Auj denotes the inverse of the matrix Aij and is given in

Table 34 shown partitioned according to A7 1  P Q . The inversion of
R S

of the matrix Aii was carried out by the use of high speed electronic

calculating machines. Since we have neglected all non-linear terms of
wm.,n except those involving wl, 1  w1 ,3, w3 , 1 , w3 , 30 W1 ,5 P w5 91 with Kj

found as functions of these deflection coefficients, we can substitute
these K into the first six equations of (85) and obtain a system of

six non-linear equations in terms of these deflection coefficients. In

WADO TR 54-8 55



matrix notations, the first six equations of (85) my be written as
follows:

h 1i RRh ÷(h 88)

where

1W,1 089783

• 0049583
1,3 ..0056107w3,1 .0011085
UEi

WI W3,3 Bi .0010103
.0012757

1l,5-

and
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00 0 0: 00

00 0 0 0 0:

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 9 0

o
0 ~0u'•

S 00 0 00

0 0 0 0 00

0 0 0 0 0 0

0 0 0 0 00

%D

o o o oo

0 0 0

%0
00000•

000 0

000000



By subtituting (87) lite (88), we obtain

Te simplify the notation, let

then

22

h LRhj L LJ(9

The above matrix Operations have been carried out and we obtain the
following results:

.0o4 193 H1

-. 00335124 H2

.0027/4422 H3

*i, .00016766 and H1  H4  (90)

-. 00120163 H5

_.00120163 H6

where the H1 are listed in Table 35.

The six non-linear equations (88) can be solved by an iterationmethod as follows. Consider at first the first equation. Assume that
all deflection coefficients except vl,I are zero. Then we have a cubic

equation in WlI. This equation can be solved by trial and error which

gives a first approxfimation to WlI. Next, consider the first two
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equations and assume that all deflection coefficients ezcept w1 , 1 and

Wl,3 are zero. Substituting the value of W1 91 obtained previously

into the second equation, a first approximation to the value of

can be obtained. Next substitute this value of w,,3 into the first

equation and calculate the second approximation to the value of vP.

This process is repeated until the desired accuracy is obtained. It
may be pointed out that after the second cycle, it is not necessary
to compute the Wl, 1 by using the value of W1. 3 computed in the previous

cycle and a value which appears to give a more rapid convergence can be
used. In this way the rapidity of convergence can be accelerated. By
taking more equations and solving for more unknowns, all six unknown
deflection coefficients can finally be solved.

It was found that the convergence of the solution is fairly rapid
if the iteration of the first equation is carried out according to the
scheme

a nl 2 Wl(n) _ )- 11

~, (n1) (.02=293 +-H
h (h.60 R h h/ (91)

whor E(n). H(W (n) ,w (n) ,31(n) ,w3 ,(n),w (n) w (n)) with

the (n)3  term deleted; and the remaining five equations are iterated

(1.1 3 according to the scheme:

h
wi (n+l) 2

h, a-- [GiJ +Hi(n) (92)
h Rh

w e Hi(n) = Hi (n) (n) (n) (n) (n) (n)

In the above equations, the superscript (n+l) indicates the (n+l)-th
approximation and n indicates the value assumed before the (nel)-th
cycle is computed. Since these equations are cubic equations, it is
possible that these equations may have more than one set of solutions.
To show the uniqueness of the solution is a very difficult task although
it is intuitively clear that there should be only one equilibrium
configuration in this problem. This is partially born out by solving
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the first equation when only vl, 1 is assued to be different from zero.

It was found that, in this case, we have one real root and two complex

ones*

The iteration of the six equations according to the scheme of
Eqs. (91) and Eq. (92) are shown graphically in Fig. 29. In this figure

the solid lines lead from the assumed vilues, vi(n) to the iterated

values, Vi(n+l) while the broken lines show the next guess made from the

results of the previous iterated value which is used in the next iteration.,
The iteration converges to the values for wi with a2

- 337.5 (a - 9",
Rh

R - 6", and h - .040") as follows:

w . w
.1Lý.1 221*8249,Z a'~ 0.1169 z3 m527, .01949 -,01z * 2025
h. h h h ,. h h

These values for wi are used in computing Ci from Table 33 and Di

from Table 31., We obtain therefore,
3 1.840

C1  a 15"08h 1.830 2

C2  ,49 3  1.820 ,,.

"C, n 0039917h3 -.120 -3 41 . -. 116

a4 -*.000 2530h 3 -.110 / ''

C5 a .000010190 -.100

C6  a .00001045h 3
_ ,0000002114bh3 -.080

0 a 20.33h3  -.06

09 " -1o075h3 .530

C10 a -- 0709 .520 _

C1 1 ! .009659h3 .10o

2 a .0001135h3 .200- - . w,=.o2025

12 .o
13 .000030371 .02, V

S-.oooo000000626& 3 0
0 1 ~2 3 4 5 6 7 6

Iteration of the Six Non-Linear
Equations

Fig. 29
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D = 16.9219h3  D5 = .00000011h 3

D2  = .9018h 3  D = -. 04668h3

D3 = .1300h 3  DI7 = -. 006135h 3

D4 z .001054h3 D18 = -. 00057689h 3

D5 = -. 00000934h 3 DI9 = -. 00008891h 3

D6 = -. 00000687h 3  D2 0 = .00001768h 3

D7  = -,000000214h3 D 21 00000798h 3

D8  = -. 00000002h 3  D2 2 = 00000001h,3

D9 = -. 5360h 3  D23 = .00008837h3

D = -. 1290h3 D24 = .001891h 3

D1 1 = -. 01286h3  D2 5 - .0006802h 3

D12 = -. 0004967h3 D26 = .00007 4 49h3

D13 = -. 00002564h 3  D - .00000208h 3

D = -. 00000339h 3  D2 8 a -. 00000251h3

Using these values for Ci and Div the Kils can be computed

according to Eq. (87) by which we obtain

a 2  2 a2a__ K1.L_3032 a_ I"-27664 T7 = 241
Rh Rh Rh

2 a2  2
L - -7765 K13 - - 326 + T9 - 3183

Rh Rh Rh

a K5 a - 12703 TI - 278.3 -T -3817
Rh Rh TRh

a__F,7 - -16553 aT 3  - 924.4 -T -4520

Rh 1Rh Rh 1

a 2a2
9 =--22669 - T5 - 1694

Rh Rh
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Substituting these results into equations (85), the values of
wm,n are as follows:

,,9IA - 1.7' w A,/ - .059 W13 ,3/ =-.0015

",V1p3  - -. no wl,,1 A - .032 w3 , 5/h a -. 030

w, A -*2 "i31,l"A .020 w5̀,5/l U -.00K76

W,3 /0 .018 w ,/' = -.014 W7,5A = .034

wl,5 = -. 099 w7 ,/,/h - .018 w9 , 5Ah a -.00076

,5 ,t A .201 W9,93  -.0046 ,,,5• - -.00028

"u7 ,pA - .133 W11 , 3/A a -. 0025 w,3 , 5 A - -.000097

=,,,A - -.060 9/h a .038 n, A -.-002

"V397A --.027 w9 ,4h - .0046 w13,U/A = -. oo

W,5 ,7A = -.010 W 11,94h - .0033 ' 1, 1 3A . -. o0

w7 ,7 /A = .032 w 3, 7,/h W .0024 w3, 13/ = -.0078

,/h - -. ow,,,A - -. 017 W , 1 hA = -. 0056

,,n,7/h a -.00094 V3 ,A = -. 012 ,7 ,13A - .018

W1 ,* -. 00054 w 5̀ ,•1n/h -.0075 , 9 ,13A a -.0028

w,•,• - -. 022 ,nA - .022 W11, 13, -.0019

w3,,•, .0 -00oo5 , 9 ,nA . -. 0030 w, 3,,13  - -. oo_

w509  - .0059
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Comparing the values of these deflection coefficients, it is
observed that it is reasonably accurate to neglect all the non-linear
terms in these equations except the first six. The derivation of the
values of the first six deflection coefficients so computed from the
results obtained earlier is probably due to the accumulated errors in
the substitution, especially since the matrix inversion A- was
found to no more than four significant figures.

The stress function coefficients bpq can be computed by substi-

tuting the values of these deflection coefficients into Table 30 from
which we obtain

b092 - .569Eh 2  b 4o - .oo h2
b0,24 = 00 h b4,02 .004M

bo, 6  -. 0013Eh 2  b4 0 -. O017Eh 2

bo, 8  -.. 00681 2 b496 - -O025Eh2

bO0,0 l -.O0027Eh 2 b4,+8 = *OOO34Eh2

o _.O06Eo 2  b - .OO36Eh 2

b~ - 02l6Eh2 2

b2 ,0  - o 2  b6 ,2  - _ o8

b2 , 2 = -079Eh 2  b6 t4  - -. O0098Eh 2

b2,#4 = .00oE2 P6,6 - .00022h2

b2 , 6  a -. O019Eh 2  b8 , 0  .O0018EOh2

b2 , 8  = _.0012 b892  U _.0O002,,

"20 .O0 000h 2  b8 4  0092

b2,12 0 -' °°h°h2 ho,o - "°°°°2Eh2

With the values of wmgn and bp~q determined, we thus obtain tht

solution to our problem of claqping a curved plate in a flat frame.
The actual distribution of the deflection and stresses can be found
from the relations previously listed and shown below:

w= Z Zwm~n sin Mrx sinwry (70) bis
a b
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and 82 F

dyO y28Y x2

82F
O~oO"---"

where

F = Z bpq coos coo (71) bis
a b

The variation of the non-dimensional unit membrane forces and
deflections are computed using the finite number of terms obtained above.
They are plotted along four sections of the plate, that is along
x - a/4 and a/2 and along y = b/2 and b/4. The values are plotted for
only one-quarter of the plate (O-x-a/ 2, Ot-y:b/2) in Figs. 30-36
because of the symmetry of d , dy and w. The computed non-dimensionalized

forces are represented by the solid lines of Figs. 34-36. In Figs. 30-
33 the deflection curves are shown magnified for the portions of the
plate near the boundaries. It can be seen from these magnified views
that the boundary conditions on the deflections which theoretically
require zero slope and deflection, seem to be well approximated by taking
the finite number of terms.

SECTION XIII

DETERMINATION OF THE BUCKLING LOAD FOR A PRESTRESSED PLATE

Having determined the inplane forces in the prestressed plate, the
next problem is to find the buckling load. Here the use of the term
buckling load can be subjected to objection, because the prestressed
plate will have initial deflections and there will not be a definite
load at which the "flat" form of plate becomes unstable. However, if
we assume that these initial deflections do not exist, then we may
determine the "buckling load" by the Rayleigh-Ritz method.

Let w be the lateral deflection of the plate due to buckling.
Then the bending strain energy in the plate with all edges clamped when
buckling occurs is
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8w dx dy (93)2 •/ O 2 Y2 )"

where D is the flexural rigidity of the plate. The work done by the
inplane forces is

2 2w~
W 1 (a ) + +. 2 w dx dy (94)2 fl x 6x YCy COx 1

A•

where N x = 0N = Nycr + Nyo9 Nxy = NxyOp the subscript 0 refers

to the original inplane forces and the subscript cr refers to the
buckling value. At buckling, we have

u -W 0 (95)

from which we obtain

T (96)

where T Af(•)2dxdy

and

W W-N T
ycr

It must be emphasized that the above relations are correct only
if there were no initial deflections. With the presence of the initial
deflections, the values of the inplane forces originally due to the
prestressing will be changed when the load Nycr is applied and therefore
the above method of calculation may induce an error which is not small.
However, in the absence of a better method, it was decided to try to
use the Rayleigh-Ritz method.

The Rayleigh-Ritz method can be carried out as follows. First,
the deflection w is assumed in the form of a series, every term of which
satisfies the boundary conditions but with undetermined parameters.
Substitute the series into equation (95) and carry out the integration.
Then minimize the resulting expression with respect to the undetermined
parameters. This gives us a system of homogeneous equations involving
the buckling load N yr* A non-trivial solution is obtained if we equate

WADC TR 54-8 65



the determinant of the coefficients of these parmeters to zero, from which
Nyor is calculated.

The boundary conditions for a clamped plate are that the deflection
and the slope normal to the edge are zero at the edge, i.e.

atx W O,a Vw a¶W 0
8x

at y = O,b V a 0

To satisfy these conditions, we my assume w in the following form.

w- asin 1 na Z E v sin MM sin "Y
a b m l n.l 1 14n a b (97)

where wmn are undetermined coefficients,

Substituting (97) in (93), we find

-r4  (n-() won 17 ÷li rs 2  1b a

U--- 1 EZ Z-j-2 sin-Tr sin- jTM n+1) coosInw
2/ TIfl b a a Lb

0 0

2 (1n 1 v
-(n-i) cos + m- sn sin

b a a2  b b

n+l)2 cos - (n-)2 cos dx dy
b

(98)

WADC TR 54-8 66



Performing the indicated integration, we obtain

Dp~ go 2b 42

i,2 () (m"+6mn+21)

+ Z 2w1 2 - (n4 +6n2 +1)
'~ b

E ii1w 1 ,n.2 w 1 , (1) 2 ý~(n+i)2+8n]

m=l b=

-z w ,,46 z.(-•1(.)b II._)2+8m

a4 b
+ 0 so~ 2fb (m.i6m2+1)+(1)3( 2+1
+m1 w q1 mna (n+6n 21

m=a n21 21
+ 2 ()n(m2+1) (n2+1)

b b

do w
w--l n=3 zn n-2

+ (A(m4+6m2+1)+2(!) (m2+1)(n._1)21
a bJ

*06

Z 2ýý,n w [( -)(m4-6m +8m-3)
m=3 n1l [(anm~

+ (1) (n4+6fl2+1)+ 2 () (ml)2 2(2+13
b b
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S- "an-2 wm'n (n4 -6n 2 +8n-3)

mi3 n=3 Lb

+ (-.) (4,6-•+,- 3 ). 2 (A) (m_1)2(n-,)2j
a b

ma1n. 2wm,n+2 wmn [(,) (n4-6n2-8n-3)m~l n=l

+ • b(m,.+6wý+l1.,2(a) (m2+11 (,,+',).

a b

- Z 2N+2,n w mn )(m4-6m2-m3)
W=l n=l [(a

* (-) (n.,.6n2+1)+2(-a)(m+l) 2(n2l+1
b b

m3 nY 1, wm-2,n+2 Wmn )a(m/-m2sm3)

+ (a) 3 (n4-&n2-8n-3)+2(a) (m-i) 2 (n+l)2]
b b

"* 0 do [(;a)(3 4 2+8 3 )
7- '7' wm+2,n-2 wr,n
r=i n=3

* (-)(m4-6m2-8rm-3)+2(a) (m+1)2 (n-i)2]
a b
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+ E E V w n-n-n3
m=3•' n-3 m+w=2,'•+2 M=" a(.)n,,_ b•

M (+2(m 4.6m2 -em-3)+2(1(l)2 (nl)
a b (99)

It may be mentioned that we obtain the above general form for U if all
terms in the assumed series for w are taken. If only a finite number
of particular terms are taken, the coefficients of those terms omitted
naturally should be deleted from the above expressions.

Substituting the assumed form for v. into the expression for T
and integrating, we obtain

T = -_. w,n 2(1+n2)(2wmn ",--2,n
128b

+ W2_mn "W2+m,n)+(n 2-l)(-2wm,n_2 -2wn+2

+2w+ + w -W+ 2m,,2-n + m-2,n.-2 m-2,n+2 m-2,2-n

-w2-mn-2 w2-mn+2"2-m,2-n.+w2+mn-2 . 2+M, 2+n'w2+m,2-nj

(100)
The work expression due to the prestresses existing in the plate

will now be computed assuming that these stresses remain the same as
before the buckling load is applied and remain constant during buckling.
Thus

N h2 F N h 2= - (101)
Oax2 xyO fxay
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and

00

F- Z Z b coso CosS
p-0 qO Pq a b

To simplify the writing, let

W•y=+ Ny0 (8w) dx dy
2 xA ax

2
w + 1A dx dy

S= + N N a dx dy (102)
IIXY XY0 x ay

Then, after substitution and integration, we find

hr 0 00n a 2 2Vx h 2 lE ':l--7v klZ aZ W[2(n-t)b 2bn-t-2(n+t) bsqn+t
X 512.2 w1 1~ k1 t-- b~ ~ ~ - ~~

-(t-n+2) 2 b stn+2-(n-t-2) 2 bsnt_2-(n-t+2) 2 b s,n-t+2

D T(n+t52)2b- 2+(n+t02)2b [2 -r
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+ (_Mk+1-.2m) ýk-m4'2 +(.4ik+i-2m) in-k-2

+ (-uk+1+2m1) Jm-k+2 + (-mk+1+2m) ýk-m-2

s .9

+(-nik-1+2m) ý2m- +(_Mk-1+2m) &m+k-2+(-k1-2m) gm+k+2

(103)
where = 1 when i= J and 0= Owhen I J

-2 z E 2 Z ) b./-k,
512a m=l n=l k=l t=l b

-(m-k-2) 2 b 6k2,(2ak) 2 b 2-mk,-mk2 m-k+2,.s

+(mR+k-2)2 _bks2,s -2 (m+ k, s+(m+k+2) 2b k+2, 8J

S S S

+ (-nt+[+ -t) it-2 -(2) S-''((.t.2+) Snt

s S

(104)
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256a2 m-1 n-i k-i t=Wl (

JS+2, -k(2-,+k)bb•k_-(2,mk)b 2

- ÷(n+l)f(2+n-t) 2

÷ si-n)(2-n+t) S2-i+t .*n) (n+t÷2) Wn+t+2÷( -1),(n-t- 2)S-t-2

+ [-2(mk)bS.2(m+k)b k+ (2+m.-k)b 2 +m_kts

-(2-m+k)b -(2+m+k)b + (m-k-2)b2-re~k,s- 2÷r+k, s m-Jc-2, s

-(rak-*2)bm~,s jj(1-t) (2*n-t) S2a $Mlt (2t B S+

+M(i-t) (n~t-2 ) tnj] (2- C in)(1)

(105)
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To obtain numerical answers, let us consider a plate with the
following dimension ratios:

b/a - 1.59, a - 33.5 (106)
Rh

These ratios are those corresponding to the plate tested having a
thickness of .040 in. and an initial radius of curvature of 6 in.

Using eqs. (99), (100), (103), (104), and (105), and taking only
one term in assumed form of deflection, namely,

V = Wl,2 sin2 rx sin 11 sin 2fy (107)

a b b

we find

U - 1.361 V w1 , 2 2

T - -. 156w w. 2

.21,2

w= W +.o)49 2 (08

S2

"Y a 1,2(O)
a

Wxy 4 .0494 - Wl, 2
2 (1)

a-+034 IA 2
WXY4- a 1v, 2

Substituting the expressions (107) into the buckling criteria yields
the following equations:

2(1.563 - + .156 2Ny)Wl, 2 ) 0
a

or Ny = 10.02 2 (109)
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The buckling load for a non-prestressed plate of the same dimensions

can be found in an analogous manner by equating to zero the work done by

in-plans forces due to prestressing, i.e., omitting -, y a W-.

The buckling criteria for the corresponding non-prestressed flat

plate yields

2(1.361 a + .156 r2 N•) w1 ,2  0

or N !-8.72
(no)

From the above calculations, we find that,-by assuming the deflection
in the form of (107)aed assuming that the in-plane forces remain constant
when the buckling load is applied, the Rayleigh-Ritz analysis shows that
the buckling load is increased 14.9% by prestressing. It may be mentioned
that a more accurate value for the buckling load of a non-prestressed
clamped rectangular plate with b/a = 3/2 is (12)

Nycr .-833 a (12)

which is 4.7% lower than the value just computed.

To stuiy the effect of taking more terms in the assumed deflection
series (97), we consider next the following deflection form

w a (wl,2 sin ,+ w,,2si, n"x)sin ! sin 2Z sin 2r (112)
a a a b b

Substituting this deflection form into (99), (100), (103), (104) and (105),

we obtain

S- f87.ll w,2 2-137.63wlw3 ,2+565.63w3,2 2

64a 2 Lw 1,2-66 1, ,232

T a - -l- l, 2 -6.67w1 , 2 w3 x,2 6.67w3 , 2 2?
6/5-
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S-" - •2 j 2[18. ,2 2 .3l.35W,2w3 ,2485.40w3

Wý- D7T'4  2 2

a- D7 -3.13w v2+7*88W V 2W32-7OJ3 922]

[r'+f2-. .,22297`w1,e2 3, 2-.Uw3 .22
64a 1 2

(13)

First, let us calculate the buckling load for a non-prestressed
plate. Let

K a -N r a2/ rD (114)

then, we have

UNycr 6 D24 87.1+lOK)Wl, 22_(l37.63.6.6?K)Wl, 2 W3, 2 +(565.63+6.67K)v3, 2 2964a2

(115)

Minimizing the above expression with respect to the undetermined
coefficients w3 ,2 and Wl,2 we obtain the following two equations at buckling,

a(V-T) = 1~4 (17,4.22+20K)w 1v2-(137.63+6.67K I)v3,2j W 0
aWl,2 64

8(V-T) - T ?(1L37.63+6.67K)wl,-(1131.26+13.33K)w3l2 m 0

ftw3,2 64a2  1

(116)
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Setting the determinant of the coefficients of these two equations
equal to zero, the conditions for a non-trivial solution give

K2 + 104.06K + 802.10 - 0 (117)

from which we find

AK 838, or - 95.7 (118)

or

N yr - 8.38 2
yor 2

a

Although this answer was arrived at using only two terms of the
series, it is only.06% higher than the more accurate value found by
Levy (12) and listed as Eq. (I11). For the prestressed plate, we have

.9÷l-T)-T - W, 2 -(l1.l6.67K)Wl, 3,2+(648.21+
V--0 - 0 - 0  - (29.9+10K)wl,

X y zy 6 /4a f(9

6.67K)w3 , 2 21? (119)

Minimizing this expression with respect to W1 , 2 and w3 , 2 , we obtain the

following two equations

(199l8+2C.)wl, 2 - (158.122.67K)w3 , 2 - 0

-(158.12+6.67K)vl, 2 + (129 6 *4+13.34K)w3,2 0 (120)
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The condition for a non-trivial solution is

K2 + U9.lk + 1052.7 = 0 (121)

from which we find

K - 9.61, or - 109.52

or 2

N ycr =9. 61!L P (122)
a

Although the actual values of w1 ,2 or w3 , 2 cannot be found there

ratio can be calculated using either of Eqs. (119).

The first of Eqs. (119) may be rewritten as

(199.8+20K) 2 - 158.12 + 6.67K = 0

'3,2

Substituting/K - 9.61 the equation becomes

7.6 wi 2̀  222.22 = 0(13)

"3,2

or

1,2 29.2 (124)

w3,2

for the prestresssed plate.

The buckling loads and ratio of deflection coefficients were computed
for both the non-prestressed and prestressed plates using other coefficients
smd combinations of coefficients in the assumed deflection series (109).
The results are tabulated in Tables 36 and 37 and shown graphically in
Fig. 37 for various percentages of the calculated amounts of prestressing.
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Note that due to orthogonality relations between the assumed
deflection form and the stress function series taking a limited number
of terms of the deflection form (w, n) will automatically limit the number

of terms describing the stress function (b pq). The stresses computed

with these limited number of terms (due to considering only one term,
"wl,2 in the deflection series) are compared with those computed with
a larger number of terms in Fig. 34, 35, and 36. In these figures the
stresses corresponding to the limited number of terms are shown with
broken lines while the more exact representations are shown with solid
lines.

12

a

U

.oi
C

C1

0

0 100% 200% 300%
% of Calculated Stresses

Results of Rayleigh Ritz Analysis

Fig. 37
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TABLE I - lb

(Flatness tests on .032 inch Aluminum Plate)

Deflection Deflection Deflection
Positio x 163 incheo Pisition x 6 inches Position x 10 3 inches

1-1 0 2-1 -18 3-1 -12

1-2 -15 2-2 -38 3-2 -2V

1-3 -23 2-3 - 3-3 -37

1-4 -27 2-4 -49 3-4 -30

1-5 -25 2-5 -46 3-5 -28

1-6 -18 2-6 -35 3-6 -20

(minus indicates downward deflection)

TABLE 1 - lc

(Flatness tests on .040 inch Aluminum Plate)

Deflection Deflection Deflection
-n3 -!3 -

Position -x 16 inches Position x 103 inches Position x 10 inches

1-1 0 2-1 0 3-1 +3

1-2 -6 2-2 -9 3-2 -1

1-3 -14 2-3 -19 3-3 -10

1-4 -12 2-4 -17 3-4 -13

1-5 -8 2-5 -11 3-5 -13

1-6 -5 2-6 -5 3-6 -6
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TABLE 3

Results of Tests on 24 S-T Al. Alloy Plate

Radius of Curvature - 9 1/4 inches

e a(10 ) in./in.

(using
Gage Test I Test 2 ... Test 3 Test 3 corrections)

1,2 -43.5 -26 -24 (1.10) +42

3,4 +61.5 +71.5 +71.0 +71

5,6 +75.0 +81.5 +84.5 +84.5

7,8 -140.5 -98 -111.5 (8,9) +76.5

7-2,8-2 X X X +13.5

Note: + = tensile

- = compressive
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TABLE 3.

Membrane strains for second .040 Aluminum Plate

Gage Position Membrane strain
see Fig. 5 u-micro-inches per inch

A-i -10

A-2 +65

A-3 -10

A-4 -15

B-I +10

B-2 +10

B-3 0

B-4 -60
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TABLE 12

Membrane strains for first .040 Alumdnum Plate

Gage Positions Membrane strain Assuned

(see Fig. 5) (see Fig. 4) micro-inches per inch Value

C-i A-i -16

-26

C-2 A-2 -10 -10
-9

A-3 +14 +12
+10

C-4 A-4 +21 +20
+19 1/2

B-7 B-I -16 -18
-21

B-6 B-2 -21 -23
-26

B-5 B-3 +43 1/2 +41
+38 1/2

B-4b B-4 -18 1/2 -19
-19
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TABLE 1,3

Membrane strains for .032 Aluminum Plate

Membrane strain

Gage Positions micro-inches per inch Assumed

(see Fie. 5) (see Fig. 4) Tsst 1 Test 2 Test 3 Vale,

c-i A-1 -130 -52 1/2 -40 -70
-131 -54 1/2 -26 1/2

C-2 A-2 +10 1/2 +25 1/2 +35 1/2 +30
+18 1/2 +25 +46

C-3 A-3 +37 1/2 +15 +30 1/2 +30
+43 +21 1/2 +33 1/2

0-4 A-4 +10 -22 1/2 -3 -5
+10 1/2 -14 -3 1/2

B-7 B-1 -189 -140 -36 -120
-176 1/2 -135 1/2 -32 1/2

B-6 B-2 +38 1/2 +51 +53 1/2 +45
+35 1/2 +49 1/2 +54

B-5 B-3 -45 -/.2 1/2 -28 1/2 -40
-46 -43 -29

B-4b B-4 +24 1/2 +15 1/2 +27 1/2 +20
+24 1/2 +14 +28
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TABLE 4

Membrane strains for .051 Aluminum Plate

Membrane strain

Gage Positions micro-inches per inch Assumed

(see Fig. 5)- (see Fiig. I4) Test 1 Test 2 Value

C-i A-i -42 1/2 -76 -60
-37 -75 1/2

C-2 A-2 -44 -85 -60
-35 1/2 -84

C-3 A-3 -32 1/2 -/7 1/2 -35
-21 -49

C-4 A-4 -25 1/2 -26 -25
-18 1/2 -29

B-7 B-i +43 1/2 +56 +50
+44 +51

B-6 B-2 +68 +76 1/2 +70
+69 1/2 +71

B-5 B-3 -/ 1/2 + 1/2 -5
-2 1/2 +2 1/2

B-4b F-4 -54 1/2 -41 1/2 -45
-42 -44 1/2
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TABRL 15

Calibration Tests
Performed on Flat Plates

Plate No.* Width of supported edge Buckling load. lbs.

F,40,1.5,30

1 1/4 715

1 755
F,40,1.5,31

1 1/4 (a) 67o

1 1/4 (b) 650

1 675
3/4 730
1/2 600

F,40,l.5,32
11/4 760

1 740

3/4 715
F,40,1.5,33

11/4 815

1 625
3A4 770

1/2 640

* The designation of the plate number is as follows: F indicates
non-prestressed flat plates, the first set of numbers indicates the
plate thickness is .040 in., the second set of numbers indicates that
the aspect ratio is 1.5, while the last series of numbers indicates
that this was the 30th of the type tested.
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TABLE 16

Buckling Tests of Flat Plates
With 1/2 Inch -tmported Edies

Plate No. Btcking load, lbs.

F,40,1.5,22 565

23 3 waves

24 560
25 610
29D 560
31D 600
33D 640

Average value - 589 lbs.

TABLE 17

Buckling Tests of Flat Plates
With 3/4 Inch Supported Edges

Plate No, Bucklinp load, lbs.

F,40,I.5,26 510

27 580

28 670
29A crimped Plate
31C 730
32C 715
33C 770

Average value 663 lbs.
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TABLE 18

Buckling Tests of Flat Plates

With I Inch Suviported Edges

Plate No, Buckling Load lbs. (Yoshikits Method)

F,40,I.5,1 750*

2 770*

3 760*
4

5 745
6 Soo*

7

8 765

9 745

10 705

n 755

12 755

13 815

14 745

15 600

16 3 waves

17 650

18 730

19 680

20 3 waves

21 690

30B 755

31B 675

32B 740

33B 625

Average value - 726 lbs.

* Gage poorly located - determined buckling load by load vs. bending

graph, not shown in Fig. 15.
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Buckling Tests of Ordinary Flat Plates

-With 1 14 Inch Suported Edges

Plate No. Buckling Load lbs.

F,40,1.5,30A 715

31A 660

32A 760

33A 815

Average talus e 738 lbs.

TABLE 20

Theoretically Calculated Loads Carried by Supported Widths

Width of supported strip Load carried by strip

1/2 inch 63 lbs.

3/4 inch 95 lbs.

1 inch 126 lbs.

1 1/4 inch 158 lbs.
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TABLE 21

Buckling Tests of Non-prestressed Flat Plates. .032 inch Thickness

With 1 Inch Supported Edges

' Plate No. Buckline Load (Yoshikits Method)

F,32,1.5,1 320

2 300

3 400

4 365

5 350

6 255

7 270

8 245

Average buckling load 313 lbs.
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TABLE 22

Bucklinz Tests of Non-Prestressed Flat Plates. .051 Inch Thickness

With I Inch Supported Edges

Plate No, Buckling Load (Yoshiki's Method)

F,51,l.5,1 980

2 1490

3 1150

4 1100

5 1200

Average buckling load 1175
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TABLE 23

BueklinR of .040 Prestressed Plates

Initial Radius Buckling Load Buckling Behavior

Plate NoL Inch Top of knee Yoshiki's Method Type

C,40,l.5,27 5 800 ? Mode jump

28 ? . .

29 900 810 Normal

30 700 740

31 700 740 Mode jump

32 Approx. 700 ? , "

33 Approx. 1900 680

34 900 980 Normal

35 Approx. 1200 ? Mode Jump

36 5 900 860 Normal

C,40,l.5,2 6 ? 1480

3 1800 1530

4 900 1070 "

13 900 770 Mode jump

24 500 ? Normal

25 750 790
37 650 580 or 2180 Double Parabola

38 800 710 or 1460 "

39 650 810 or 920 "

40 700 640 or 1840 " "

41 550 ? Normal

42 6 700 650 or 1580

C,40,l.5,5 7 850 ? Normal
6 1150 ? Mode jump
7 900 880 Normal

8 850 850 .

9 700 760 "

10 600 620

11 7 650 620 "

12 7 650 620
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TABLE 23 (continued)

Initial Radius Buckling Load Buckling Behavior

Plate No. Inch Top of knee Yoshiki's Method Type

C,40,I.5,16 8 900 890 Normal

17 700 820

18 1100 910

19 750 710

20 1100 ? Mode jump

21 1050 980 Normal

22 800 820

23 8 600 610

C, 90,J.5,43 10 800 480

44 800 540 and 1900 Double Parabola

45 800 580 Normal

46 800 640 "

47 800 ? "

48 950 700 "

49 800 450

50 10 1000 680 "
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TABLE 2&

Buckling of .032 Inch Prestressed Plates

Initial Radius Buckling Load Buckling Behavior

Plate No. of Curvature Top of knee Yoshiki's Method TnYe

C,32,ol.5,l 5 500 510 Normal

2 5 450 430 or 640 Double Parabola

3 5 1700 1650 Normal

4 5 300 300 or 870 Double Parabola

5 5 550 400 Mode jump

6 5 200 215 Normal

7 5 - 250

8 5 - 220 or 710 Double Parabola

9 5 250 225 or 610 "

C,32,1.5,10 6 450 440 Normal

11 6 250 230

12 6 (400+)* 340 Mode jump

13 6 400 430 or 1060 Double Parabola

14 6 400 380 or 1190 Normal

15 6 250 -

32 6 350 170 Mode jump

33 6 200 220 Normal

314 6 200 200

35 6 400 320

36 6 375 270 Mode jump

37 6 - - "f"

C,32,1.5,16 7 375 - Normal

17 7 400 350

18 7 400 460

0,32,1.5,19 7 - 400

20 7 400 - Mode jump

21 7 400 390 or 760 Double Parabola

22 7 500 330 Normal

23 7 200 250 Normal (3 half wave

* Not used in finding averages.
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TABLE 24 (Continued)

Initial Radius Buckling Load Buckling Behavior
Plate No, of Curvature Top of knee Yoshiki's Method Tpee

C,32,1.5,24 8 350 300 Normal

25 8 375 320 or 490 Double Parabola

26 8 550 385 Normal

27 8 - 300 Mode jump

28 8 525 465 Normal *

29 8 400 360 or 530 Double Parabola

30 8 - 330 Mode jump

31 8 350 290 Normal

• Not used in finding averages.
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TABLE 25

Buckling of .051 Inch Prestressed Plates

Initial Radius Buckling Load Buckling Behavior

Plate No. of Curvature Top of knee Yoshiki's Method TM*e_....

C,51,4.5,1 6 2200 ? Mode jump

2 6 2000 ? " "

3 6 1400 ? "i"

4 6 2000 ? " "

5 6 2800 ? . .

6 6 1400 1200 Normal
7 6 1900 1200 and 2000 Double Parabola

8 6 1900 1500 Normal
C0,51,1.5,9 7 1400 1420

10 7 1700 1400 and 2700 Double Parabola
11 7 1400 1220 Normal
12 7 1600 1400
13 7 .1400 1280 "

14 7 2000 ? Mode jump
15 7 1400 1790 Normal
16 7 1400 1200 and 2800 Double Parabola

C,51,4o5,17 7 3/4 1200 900 Normal

18 7 3/4 1800 ? Node j m
19 7 3/4 1500 1000 Normal
20 7 3/4 1500 1080
21 7 3/4 1400 1250
22 7 3/4 1600 1200
23 7 3/4 1600 ?
24 7 3/4 1800 ?

C,51,1.5,25 9 1300 1150
26 9 1500 1180

27 -9 1400 1210
28 9 1450 1160
29 9 1600 ?
30 9 1500 1220 "

31 9 1500 1220

32 9 1200 1060
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TABLE 26

Average Buckling Load of .040 Inch Prestressed Plates

Initial Top of knee Method Yoshiki's Method

Radius, in* Average Load No, of tests averaged Average Load No. of tests av,

5 967 9 802 6
6 809 u 903 or 1362 10
7 813 8 745 6
8 875 8 820 7

10 844 8 581 or 776 7

Average Buckling Load of .040 Inch Prestressed Plates

Initial Top of knee Method Yoshiki's Method

Rdius. in, Akwrwe Load No. of tests averaged Average Load No. of ests av.

5 967 9 802 6
6 809 n 903 or 1362 10
7 813 8 745 6
8 875 8 820 7
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TABIZ 28

Averaa Bu•nCgk, Loads of .051 Inch Prestressed Plates

Initial Top of Knee Method

Radius. In. Average Load No., of Tests Averad g Averam Ipad No. of Tests Av.

6 1950 8 1300 or 1567 3
7 1538 8 1387 or 1801 1

7 3/4 1550 a 1086 5
9 1469 8 1163 6
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TABLE 29
Peroent Inorease of Buckling Load

Initial Radius Net Buckling % Increase of Prestressed Over
of Cm-vatm', Thickness Load Ordinary Plate(Net Buckling Loads)

5 .032 499 (405 or 589) 101% (63% or 137%)
6 .032 263 (235 or 379) 67% (-5% or 53%)
7 .032 317 (298 or 360) 28% (20% or 45%)
8 .032 36o (279 or 321) 45% (12% or 29%)

.032 (248)* _
5 .040 841 (676) 40% (13%)
6 .040 683 (777 or 1236) 47% (29% or 106%)
7 .040 687 (619) 15% (3%)
8 .040 749 (694) 25% (16%)

.040 (600) 25% (16%)
10 .040 718 (455 or 652) 19.66% (-24% or 8.66%)

.040 (600)* -

6 .051 1426 (1038 or 1305) 56.2% (13.7% or 42.9%)
7 .051 1205 (1125 or 1539) 39.64% (23.22% or 68.56%)

7 3/4 .051 1288 (824) 41% (-9.74%)
9 .051 1207 (901) 32.2% (-1.3%)

.051 (913)*

• Used for purposes of comparison
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TABLE 30
Coefficients

b E 2 2 2
--- (2w8,1 + 3w• 1+50w9 1 -4w., 1 w., 5-36W3 91v3,3

-4w,15wl,7-4w1,7w1 ,9-- w1,9 w1,19. ,1 3 -363.3,3 . 5

2 2 2 2

+98wý,i+162wq9 , +242w ,1 +338W13,1-36WI3 ,5'W3 ,7)

E_ _
b°, 0945. (16wllwl,3"z6wlz•1,5 z%,j 3wl,7"-16w,5wlp,4"z%,7wlp,

-16w 1 ,g w1 , 13-16w 1,11 w1, 15+14w3 1w3, 3-J4w3 ,1w3,5

-l44w 3 , 3 w3 , 7 • . • )

b 0, Ei- (36w,9w t-36w U l9+18w932 -36w ,,wj
0,'6 111(%,w•5 1w,11%,7 1.,3 13w,3 1,9

230

-324 3, 1w3, 7+162w ,3 2-324w3,3w,3, 9 ... )

bo t8 - 28 (64w1,1iwl 7-64w1,9 wl 9+64w1 93ýwlp5 4.4w 13p w111

-64wv,5W1,13-64w 7w, 15 +576w3 w3 ,7 -576w3 1 3t9" )
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b°,910 E (z°°31,1",9",301, +13 °",3o 1,7910(°°,3"1,13

W4-

+l44u, 5wl7.1296•;3 ,e 3 ,, 1 -129 6 w, 1,V•, 1 +1296w, 3 w3, 9

+1296w3 w3s7 . . . )

b2 22 1601.0 (1, 1  1,13,1 1,3 , ,'1 ",3

+5, ', 5 , 2  4,,, 5V3,5 +98w1 7•2  ..196u 1 ,7w,,

300.4

-16w w•,•-•14vv ... )wWtw

-576w1,9w3 ,93-784w 1tlw 3p5 ... )
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LABLE 30 (Continued)

b (. W1 w w,,l÷,,w5+36,5,,5,9.•,,z~f,,9,
2,4 .13. 1

+100w V +007+W wt ?3,-4vjw3,w-+196w, wvj
1zo,3, 1,7zv 1 o,3, 3,1, 1-,3 3",,7* 1,5, 1,9

-196wl, w -3,IL7'6ww ',"324wjw w,, :-324vwj, W3

+484w w,.•3.^,,,9;w3, 5w+676w1 we, 15+196w3 ,1 w5 ,3  .. )

-2,6 E (-16w1,1w1 5+64w1,1w1,7+64w1 ,3w3,5 -1
6w191 3Y30

3600

1Jw,3 ,9 J44w1,3iw3,3+256w1, 5w19,1+256w1, 5w3,1

--16, w%3,l 40oow1 ,,7 w,, 1 3-400w•o ý, 3 , r576w1 ,9wl,15

-576w 1,9w3 ,,3"784wi,, 3,•.•• )
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TAME 30 (Contimwd)

b 2,8 .- (-,.36 v, q ,,,7+1 , 1w1,v, +o÷ v,,,..v3  ,--36w, 0373,,,9

4w v +196v w +196w.V -'w
-1, 1,5÷1•, , 1,3 - 13 3,5 1,3',+3,11

+324+V1,5v1,13+324v1,5v3,3 .%4v1,5 v3,l194S/+wv17v

+÷.8v,7v1 ,1,,5-•7w,,9 3, 1,90ol,, 1,3v 3, 3 ... )

"2,31o--. (-64..v,.i,,9÷1", 1.v.3.,,,,,11 +44v• 1,,,,,,. 4v1,93. 1 3,
21120

-1,•6,,, 7+256 v il,,13 +256w 1 3 ,7 -16w,,, 93 1 ,,

+"""s3., 5vwl,l 15.4oov,5 v3,5.5'76w 1,,7wv 3397S81+ 9 vf31

"-1o24wl, 11 v3, 1-1296wl, 13ý 3,3-16 1oo 15,l~vw, 5 . . . )

"212 (-100, v +196w v +196wv v -,O)

4212 ,)616 i• •I iI w3iI3,11 iov,I 3.13

-36v1,3 w1,9+324w1 3v1,15+324wv1 w3 s~"V39.. ý1 ,v

+*4v.,5v3 ,7+676v1 , 7 w3,, 5 •9oo0 ,9 w3,'3+n56v•1 117391

4-44 1 ,1w3,,•-176w,15w,, l ... )
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TAM 30 (contimnd)

, - (1v ' v 31 -16vew,5 3."4v,3 3 3-1h v13w5 3

+/+00w 1 ,5w3,5.74v1 ,7w3,,

b4,2 n (..4v 1,1w3,, 436v 11w3,,436v 11v5 1-4w11wý5.28"

+100wI ,w3 +1196 v -19 6vl,, *+324wI iwi

+2625v,9 3,5, w +5"6w
*261 ,3 5 , 1 +26 1 , 5 w3 , 1 +56 1 , 5 v3,

-576w1,55,1+576w 1,7 w3 ,3+1024v 0,""..)

b ... (-4w, V ÷lOOvw+l00•,w -. 36vw
4,6 9216 I,1 3,5 1,1 3,71 I,1 5,51,3 3,3
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TABLE 30 (Continued)

+324wl,, 3 ,9÷324v 1 ,JV5,3-196w1 5,w 3,676w 1 5v•.v.

+676w, 5"5,1+4"4v1 ,73 ,1i•" 9Of,, 9v •3+14wl ,1 3 5 ..

b,4 -S (-16w,,,7•.•v÷ , 3 ,9 ,,,• •4 0ow .

4S17778 l%,1 6,v3 *V, 35 13 i3,U1

-144v1,5v3,3e.784w1 w3,134784w1 5v5,3-400w1,7v3,

+784w1 ,9 w3 , 1÷1296w 1,1w 3 3 . .. )

b *n (36w, +324wv+1v +lw 162v, .2 .16,0164 1,15 1,5,533,1•9

b6 t2 n 1 1 5 4v 1 5 ,3 +256w1 ,3w,,l+7Uw1 ,5 w, 31284-

",- W3•v,, 3+5"6,•,3• 3. .v ... )

b6t4 ("•-,e,,lw5"-96" w,,V,,'.67'6w,ýwi
16727 ,53,5513, , ,

-36w v +324w903,1 3t3 w3,13,5,9o3,3v3,7
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TAUBIR 30--(Coniid

",6,6 - -..- (-,4v1 3 ,5 ,3•57 6v 5 ,,5 ,1-,,, 17" 3 ,3 ,I,,576w3,7
24354

÷12q6v3 , 3V, 99 .. •)

bo (64w3,".!,1

b 8 , 2- ~L(-&vW39%196 V,324Wf..

b 8,2 31 5391!,41(31p,3 ,•j "1

b8,4 .45511- 1 ,v, 3 1 ,v 5 ,1 . " " )

1 2oo"""- (55,9 "
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TABLE 31
COefi'Tioints

D1 D2 D3  D4 D5 D634
Wl,1 1.451 -. 02705 -. 001497 0 0 0

Wl,122l,3 -. 972 .448 .01149 -. 00805 -. 01488 0

l,1 23,1 -. 1920 .0410 .264 -. 0364 0 -. 0007U
2

vl,I w3 , 3  0 -. 0542 -. 0689 .1298 .00957 .000843

WlI Wl,5 0 -. 0875 0 .00832 .1492 0

2
vl 2591 0 0 -,00517 .00325 0 .0945

Wl.ll32 5.38 0 -. 06/2 0 .0417 0

v ,lV 3, 1
2  11.30 -. 414 0 0 0 .00695

Wl9iV3,32 10.50 0 0 0 .0751 .0213

Wl91%5 2 10.50 0 -. 1382 0 0 0

vl,l:s,1 29.35 -. 811 0 0 0 0

Wlpl% "3,1 .983 -. 459 -. 232 .205 .0604 .00918

W , 3vV 3 -1.301 0 .387 0 -. 0681 -. 0247

1l1, 3l , V5 -2.095 .490 .0992 -. 0593 0 0
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TABIR 31 (Continued)

DD D2 D D4 D5  D6

v9,ý'5, . 0 0 .0667 -. 0948 0 -. 0626

wv, w3, V, -5.89 1.382 0 0 -. 2015 -. 1457

w 1,1, 5 0 .354 0 -.1753 -. 1680 0

Vl,1V391V,,1  -.4.3 .238 .1009 -. 0559 0 0

w,,,,,,%, 1.342 -. 400 -. 332 .13o 0 .0271

1wVVs, W .525 -. 642 -. 1058 .1637 .1200 0

V14 %,Vw5, 1, 0 0 0 .1041 0 0

V1, 3  o 1.632 0 -. o640 0 0wl3

2
V1 ,3 w3 , 1  -2.755 0 .740 0 -. 118 -. 0209

2
W1,3 w3,3 0 -1.297 0 .668 0 0

S 2V
w1,3 W1,5 2.935 0 -. 1837 0 .848 0

2
w1,3 w5,1 0 0 -. 1520 0 0 .1998

WlV3W3,I -4*96 2.64 0 0 -. 2141 -. 0253

w2,Wp3 0 4.52 0 0 0 0
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TABLE 31 (continued)

D, DD D, D3v1 z2 v3 v4zz6
2V1,3 V 1,5 2  0 4.99 0 -. 397 0 0

V-95,17 e9*2 5.17 0 0 -.131 0

v1 , 3 v3 ,1 v3 , 3  16.59 0 0 0 .517 .1209

4l,ý'3,ivl,5 4.25 -1.310 -.704 .450 0 .0647

V v v,, 5,1 2.855 -1.087 -. 367 .465 .286 0

wl,4.3,.,z,5 -. 78 0 .850 0 -. 915 -. 1031

vl,3,A,1 -7.68 0 .878 0 -. 456 0

"",t3"1,5q, 0 0 .469 -. 396 0 -. 1952

V,3,1 0 0 2.02 -. 321 0 0

2"3 , 1
2 033 0 -1.839 2.165 0 0

V3,1 '1,5 0 -1.257 0 0 1.047 0
2

'3,1 V5,1 2.155 -. 655 0 0 0 .793
2

w30lv3,3 0 0 4.09 0 0 0

"v,lWl,2 -5.92 0 1.719 0 0 -. 0886

V3 9W5,, 1  0 0 5,76 -1.120 0 0
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TABLE 31 (Continued)

D1  D2 D3 D4  D5 D6

v v3,ý wi5 -14.18 3.040 0 0 0 -. 1660

33,1w, ol -4.53 3.135 0 0 -. 733 -. 585

wW. W 0 1.679 0 -. 637 -. 782 0

V3 , 3
3  0 0 0 1.451 0 0

2 5.27 0 0 0 1.850 .1281

2

V3,3 w5,1 6.63 0 0 0 .566 .910

03,z, o -2.685 0 1.6o8 0 0

v3,3,2 5 1 -2.12 3.50 0 0

w ,3,31',!iw5,1 8.14 -2.68 -1.205 .984 0 0

,3 0 0 0 0 1.921 0

wl,5 25,1 0 0 -. 642 0 0 .586

vl,w55,12 0 -2.53 0 0 2.51 0

w1 3 0 0 0 0 0 2.12
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TABLE 31 (continued)

(D7 - D12)

D7  DS D9 DIO DII DI2

30

V 1 ,1
3  0 0 0 0 0 0

2vio1 V1 93  0 0 0' 0 0 0

1,1 3,1 0 .0 0 0 0 .00000802

Wl,12w3,3 0 0 0 0 0 -. 001499

W1,1 21,5 0 0 0 0 0 0

1l,1 2 V5 , 1  -. 000203 0 0 0 0 -. 02025

0.,z1 o 0 0 0 0

-. , 2 -. 0002 33 0 0 0 0 -. 001217

2

w1,1w3,3 -. 00250 0 0 0 0 0

Wlplýl52 0 0 0 0 0 0

Wlvl51 2 0 .000509 -. 0000531 0 0 0

V1 ,,,w1 , 3 w•, 1  0 0 0 0 0 -. 00650

w~i~4~3 0 0 0 0 0 0

", ,',,,w ,,5 0 0 0 0 0 0
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TABUE 31 (Continued)

D 7  DS D9 Do D D12

wv, ,WU,. *00462 0 0 0 0 .0931

w1,1 135,1w,: .oz ooooo•
ifwj,:t .011o97 0 0 0 0 .01295

w 0 0 0 0 0 03490

V 1 W3 ý3 5 ,1l -00471 -. 0002050 0 0 0 0

0 0 0 0 0 -. 01303

-w00216 .0730 0 0 0 0

v 0 0 0 0 0 -. 0616

V 2, 0 0 0 0 0 0

1l,3 ,
V1,3 V3,1 0 0 0 0 0 0

V 1 . 3 2 V,3 0 0 0 0 0 -. 0404.

2
1l,3 1l,5 0 0 0 0 0 0

1l,35W,1 -. 00718 0 0 0 0 0

1l,3,~ 32 -. 0017Z7 0 0 0 0 .0315

w,3 3,32 0 0 0 0 0 .0734

V1,3 1t,52 0 0 0 0 0 0
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TABLE 31 (Continued)

D7l DS D9 DO 1.0 D1.D2

0l,ý%l o -.002445 .000416 0 0 0

V,, 3 V 3,V•3X , -.'013(7 0 0 0 0 0

wv, 3 wVi,,., 0 0 0 0 0 -.0391

-.r~e~l 01845 *001781 0 0 0 0

,, ,3,v'1,5 0 0 0 0 0 0

Vo29 .09-.oo582 0 0 ,0 0

V1 ,•V, 5 ,031 .0313 0 0 0 0 .3491

w3V1  0 -. 0000201 0 0 0 0

w3,1 2W33 0 .000292 0 0 0 0

v3,1 1,5 0 0 0 0 0 -00493

v3,1 1,5,1 0 -. ooo(s 0 0 -. 0859

w3V,3,3 2 0 -. o0 701 0 0 0 0

w3,1v1,5 0 o 0 0 0 0

V3,v, 2 01522 0 0 -.00o0529 0 0

"V ,V V,% , .02185 0 0 0 0 .0822
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TABLE 31 (Contizned)

D8  D D D1D

w3,13,35,1 0 0 .000374 0 0 .823

31 H 0 0 0 0 0 0

w3.3 0 0 0 0 0 0

2
23 , 3 v1 ,5  -. 01810 0 0 0 0 0

2 0 0 -. 001024 0 0 0

2w3,3wl,5 2 0 0 0 0o -. 1239

2 -. 0339 0 0 .0001128 0 0

W3 , 3 Wl, 5 W5 ,l -. 0697 .01172 0 0 0 0

Wl,5 0 0 0 0 0 0

2 -. 0393 0 0 0 0 0

2 0 0 0 0 0 0

wl3 0 0 0 0 -. 00000263 -. 502
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TABLE 31 (continued)

(D3.3 D1 8 )

D13 D14 D15 D16 DI7 DIS

"1,1' 0 0 0 0 0 0

2",1 ,30 0 0 0 .000ý

2
V 1 , 1 '3,l 0 0 0 0 0 0

"Wl,1"w3,3 0 0 0 0 -. O1541 0
2

1l,1 21,5 0 0 0 0 -. 0094 0

2
"1, "51 00000851 0 0 0 .0 0Wl,l wStl

l l2 0 0 0 0 -. 00253 0

wlpiw3,l2 .000002410 0 0 0 o'

'1,%3,20 0 0 0 0 0

wltlWl,52 0 0 0 0 0 0

v l ,12 0 -. 0000757 .0000015220 0 0

vl vlV3,l 0 0 0 0 -. 0371 000061

vll V V3w3 0 0 0 0 .o451 -. oo1522

"", 0 0 0 0 0 0
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TABLE 31 (Continued)

D13  D D1 5  16 D1 7  Dle

Wl,lwl3W5,1 -. 00368 0 0 0 .0227 .000510

wl, 1 W3 ,Iw 3 , 3  -. 001042 0 0 0 0 -. 00318

"w1 , 1 w3 , 1 W1 , 5  0 0 0 0 .1190 0

Wl,lW3,1w5 -. L001486 .00000902 0 0 0 0

Wl,lW3,3Wl,5 0 0 0 0 0 0

Wl,lW3 , 3 w5 , 1  .00793 -. 000534 0 0 -. 0522 0

Wl,lWl,5w5,I .00897 0 0 0 -. 0972 .0725

Wl, 3
3  0 0 0 0 0 0

2 0 0 0 0 .0456 -. 003•3

2
Wl,3 '30 0 0 0 0 0 0

W2, 5  0 0 0 0 -. 0847 0

Wl,3 w5.1 0 0 0 0 -. 0401 .0266

W 3%1 -. 001942 0 0 0 0 -. 00828

Wl,3'3,3 -. 01305 0 0 0 0 0
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TABLE 31, (Continued)

DI3 DI4 D15  D16  D17 DI8

w1,3w1,52 0 0 0 0 0 0

'1, 3 w5 9 2 0 a00568 -,000708 0 0 0

Wl3W3,1w33 0 0 0 0 0 .01880

wl,3w,,lw,. 0 0 0 0 0 0

Wl.3W3.1w . v0312 -. 002445 0 0 -. 15(Y7 0

w1,3,,3,31,.5 0 0 0 0 .467 -. 0599

'l,3,5,1 0 0 0 0 .1499 0

wl, 3wl, 5'5, -10203 0 0 0 0 0

'3,I 0 0 0 O 0 0

2
w3,1 23,3 0 -. 0002820 0 0 -,408 0

2
U3, 1 w1 , 5  00582 0 0 0 0 .0449

2
U 3,1 w5,1 0 0 .0000000316 0 0 0

W3,lW3 , 3  0 0 0 0 .426 0

w3,1l5 0 0 0 0 0 0

w3 ,lW5,I -,00583 0 0 .0000000165 0 0
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TABLE 31 (Continued)

D13 D14 D15 D16 D17 D1 8

wi, 5  -. 01328 0 0 0 0 0
W3,1 3,3owr5

w, V30 0 -. ooo378 0 0 -. 2605

w3,1w1,5 w 5,1 -. 0496 .00730 0 0 .485 0

w3,33 0 -. 001499 0 0 0 0

2
w3,3 W1,5 0 0 0 0 0 .1514

2
W3,3 5, 0 0 0 0 0 .1233

w3,3wl,5 0 o0 0 0 0

w3 3w5,1 .0738 0 0 -. 0001408 -. 803 0

w,3 w5,1 .0465 -. 00822 0 0 0 0

wi, 5
3  0 0 0 0 -. 2065 0

2
Wl,5 W5,1 0 0 0 0 0 0

'l,5w59I0 -. 01147 .00209 0 0 0

w 53 0 0 0 0 0 0
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TABLE 31

(DI 9 - D24)

D19 D20 D21 D22 D23 D24

3 0 0 0 0 0 0

2
wl, Wl, 3 0 0 0 0 0 0

2

W1,1 23,1 0 0 0 0 0 0

2W 3 0 0 0 0 0 0
1,1 . 3, 3

2
Wll Wl, 5  0 0 0 0 -. 00456 .0000900

2
W1 , 1 w5 , 1  0 0 0 0 0 0

0l,1'1, 2 0 0 0 -. 00474 .00001822

WlglW3,12 0 0 0 0 0 0

2
wl~lW3,3 -. 0001518 0 0 0 -. 0360 0

wliwl,50 0 0 0 0 0

Wl0W51 0 0 0 0 0

Wz,,,,,,3w3,1 0 0 0 0 0 0

wl, 1 Wl, 3 w3 3  0 0 0 0 .01611 -. 01428

wl 1wl, 3w1 , 5  0 0 0 0 .0332 -. 00454
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TABLE 31 (Continued)

DI9 D20 D21 D2 2  D23 D24

V 1W W 19. 51 000510 0 0 0 0 0w1,1w1,3W5,1 oo1

WlqlW3,w3w °00001970 0 0 0 0 0

w1,1w3,1w1,5 0 0 0 0 .03245 -. 02215

WllW3 , 1w5 91  0 0 0 0 0 0

wl,lW3,3Wl 5 0 0 0 0 -. 0272 .0251

Wl,lW3 , 3w5 ,l -. 00379 .0000325 0 0 0 0

WllW, 5 w 5, 1  -. 00804 0 0 0 0 .0228

wi, 3
3  0 0 0 0 0 0

2
'1,3 W3,1 0 0 0 0 .0208 -.01120

2
wl,3 3,3 0 0 0 0 0 0

2

w1, w t .070 0000013

W1,3 1,5 0 0 0 0 0 0

21l,3 w5,1 -. 001700 0 0 0 0 .01730

Wl wI.000284 0 0 0. 0 0

W,3330 0 0 0 0 0

Wl, 3Wl,5 0 0 0 0 0750 -,01729
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TABLE 31 (Continued)

DI19 D 20 D 21 D 22 D 23 D 2419 2

W,3W51 2 0 -. 001925 .0001578 0 0 0

Wl, 3 W3 , 1 W3 , 3  -. 002005 0 0 0 -. 1502 0

WlJW3,1w1,5 0 0 0 0 -. 1124 .0698

wi, 3w3,1w5,1 -. 01086 .000548 0 0 0 0

wv w vw19 0 0 0 0 0 0S1,3 3,3W1,5 oooooo

Wl, 3 w3 , 3 w5 , 1  .01628 -. 001613 0 0 .1.490 -. 0667

'1 , 3Wl , 5w5 , 1  0 0 0 0 0 -,0819

w3,1 0 0 0 0 0 0
2

w3,1 23,3 0 .0000190r o 0 0 0

2
w3 , 1 wl, 5  -. 00548 0 0 0 -. 1013 0

2
w3 , 1 w5,1  0 0 0 0 0 0

w3,1w3,3 0 -. 0002285 0 0 0 -. 1757

w3,1Wl,5 0 0 0 0 0 0

W3,10 0 0 0 0 0
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TABLE31 (Continued)

D19 D2 0  D21 D22 D23 D24

W3 , 1 3,31,5 0 0 0 0 .273 0

W3, 1 w3 ,3 w5 , 1  0 0 .0000348 0 0 0

w3 ,lWl, 5w5 , I .0594 -. 00831 0 0 .2105 -. 1268

' 3 , 3
3  0 0 0 0 0 0

2

w3 , 3 wl, 5  -. 01320 0 0 0 0 0

2
w3 , 3 W5 , 1  0 0 -. 0001857 0 -. 219 0

w3,3Wl,5 0 0 0 0 -. 1600 .1152

w3,35,12 -. 0314 0 0 .00001683 0 0

w 3,3Wl,5w5,1 0 0 0 0 -. 344 .1475

Wl,5 5 1 0 0 0 0

2

Wl,5 w5,1 0 0 0 0 0 0

2

W1 , 5w5 ,1  0 .01672 -. 00285 0 -. 2995 0

WI 0 0 0 0 0 0
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TABLE 31

(D2 5 - D3 0 )

D2 5  D26 D 7 D2 8  D29 D O33
3 0 0 0 0 0 0

2
'1,1 21,3 0 0 0 0 0 0

2li,1 2 ',1 0 0 0 0 0 0

WI '3,3 0 0 0 0 0 0

"1l2',1 3,1002

'1,1 23'5, 0 0 0 0 0 0wi wl,30 0 0 0 0 o

wis,1
2 w5 l 0 0 0 0 0 0

WlI sI2 0 0 0 0 0 0wi, 1w1,3

2liwo 0 0 0 0 0 0
Wl, 1 w3 ,1 0 0 0 0 0 0

2ll~, 0 0 0 0 .007106 -. 000692

vlw,,w. 2MO' 0 0 0 0 0

Wl W5, 0 . 0 0 0 0 0

Wl.l3W, 0000797 0 0 0 0 0

1,11,31,5 0 0 0 0 -. 00418 .0000860
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TABLE 31 (Continued)

D25 D26 D27 D28 D29 D30

w lwlW,35,1 0 0 0 0 0 0

ww w 0 0 0 0 0 0l,13,1w3,3 O

Wl,lW3 , 1 Wl, 5  .000920 0 0 0 0 0

wl,lw3,1w1 0 0 0 0 0 0

WllW3 , 3Wl, 5  -. 00352 0 0 0 .01081 -. 00813

wl,lW3,3w5,1 0 0 0 0 0 0

Wl,Wl,5w5, -. 0204 .001021 0 0 0 0

W,33 0 0 0 0 -. 000494 0

1,3 3,1 .000468 0 0 0 0 0

2wi, 3 w3 , 3  0 0 0 0 .00505 -. 00376

2,0 0 0 0 0 0

2

Wl,3 w59 -. 01268 .000548 0 0 0 0
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TABLE 31 (Continued)

D2 5  D26 D2 D28 D2 D o

w1,3V3,13,3 -. 00796 .ooo74 0 0 0 0

wl,3 11,5 -. o00827 0 0 0 .o247 -. o1657

v1,33,15,1 0 0 0 0 0 0

"",X3,,w",,, 0 0 0 0 0 0

v,3v3,3 5,1 0 -.008o8 -. ooo•09 0 0 0

vl,3wz, 5,1 .00538 -. 00580 0 0 0 .o328

W3130 0 0 0 0 0

W3,1 W3,3 0 0 0 0 0 02
'3,1 1l,5 -000999 .000997 0 0 0 0

3,1 V5,1 0 0 0 0 0 0

v3,V 3 2 0 0 .ooooosso0 o 0 0

23,elt5 0 0 0 0 -.0303 .0250

23,zW5,2 0 0 0 0 0 0
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TABLE 31 (Continued)

D2 5  D2 6  DD 2 8  D2 9  D o

"W3,1w3,3w,5 .0224 -. 00362 0 0 -. 0875 0

w3,1w3,15,I 0 0 0 0 0 0

W3,11,5 5w 0 -. 01682 .00204 0 0 0

w3,3 0 0 0 0 0 -. 0270

w3,3 W1,5 0 0 0 0 0 0

2 w -. 0774 0 0 .0000268 0 0W3,3 5S,1

W23l5 -,02025 0 0 0 0 0

W3 , 3 - 5 , 1  0 0 0 0 0 0

w3,UWl, 5w5,1 0 .01793 -. 00331 0 .1218 -. 0603

"w1,5 0 0 0 0 0 0

21, 0 0 0 0 0 -90409"1l,5 w5,1

2 0 0 -. 00563 .000862 0 0

w0 0 0 0 0 0
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TABLE 33
Coefficients

(cl - C7)

CI C C3 C4 C5 C6  C72 C

'l 1.370 -. 001497 0 0 0 0 0

2w 2,l Wl, 3  .298 -. 01245 0 0 0 0 0

wl,1 
2w3 ,1  -. 0690 .155 -. 000687 0 0 0 0

2

Wi,1 w3 , 3  -. 1148 .2434 -. 00365 0 0 0 0
2

wi, 1 i1,5  .452 -. 02181 0 0 0 0 0
2

W,1 w5,1 0 .00458 .0338 -. 000177 0 0 0

wllWl,3 5.55 -. 0767 0 0 0 0 0

2

Wl,1l3,1 120.06 0 .00330 -. 000226 0 0 0

WllW1393 2 0.59 0 .01681 -. 00296 0 0 0

WltlWl,5 10.55 -.012 0 0 0 0 0

2

WllW5,1 26.92 0 0 0 .000282 -. 0000485 0

'llWl,3w3,I -. 092 .1975 -. 00802 0 0 0 0

wll 33,3 -1.528 .512 -. 0318 0 0 0 0

wi, 1, 3W,5 -.430 -. 1096 0 0 0 0 0

WltlWl,v3w5,l 0 -. 1042 .0742 -. 00387 0 0 0
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TABLE 33 (Continued)

C 02 c3 C4 . 5 6 c7

w -2.75 0 .00838 -. 001830 0 0 0

Wl,lW3 ,w1 l, 5  .449 -. 0860 -. 00736 0 0 0

WlW3,1w5,1 .271 -. 0668 0 .000252 -. 0001779 0 0

.049 .163 -. 0344 0 0 0 0

Wl w -. 801 .1243 0 .00268 -. 000710 0 0

WllWl, 5 w5 , 1  0 -. 0141 .0349 -e00614 0 0 0

3 4.89 -. 192 0 0 0 0 0

2

wi, 3 w3 ,I -3.168 .890 -. 0338 0 0 0 0

W1 , 3 w3,3 -3.85 1.970 -. 1208 0 0 0 0

W1,3 1,5 7.167 -. 6072 0 0 0 0 0

2
1,3 w5, 0 -. 2314 .2440 -. 01184 0 0 0

Wl,3w3,I 1.89 0 .0278 -. 00268 0 0 0

2 13.31 0 .1975 -. 03894 0 0 0

Wl, 3 Wl, 5
2  15.49 -1.312 0 0 0 0 0

2 3.64 0 0 0 .00497 -. 000919 0

wl,3w3,1w3,3 18.12 0 .1592 -. 02118 0 0 0
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TABLE 32 (Continued)

c1 c2 c3 c4 C5 c6 C7

w1,33,1w1,5 -,2 .985 -. 0978 0 0 0 0

Wl,3W3,1w59 1.02 .274 0 .0208 -. 002814 0 0

W1,3W3,3Wl,5 -9.28 3.129 -. 400 0 0 0 0

W w3w -8.92 1.161 0 .0544 -. 01045 0 0

Wl,3Wl,5w5,1 0 -. 997 .4212 -. 05233 0 0 0

w3913 0 1.048 0 0 -. 0000201 0 0
2

w3, w 0 2.616 0 0 -. 000499 0 03,1 393
2

w3 , 1 wl, 5  .75 0 .0060 -. 00296 0 0 0

23,w .190 0 .235 0 0 -. 0000287 0

w3,1w3.3 0 4.99 0 0 -. 002782 0 0

2

w -6.11 1.875 -. 1193 0 0 0 0

2

w3 , 1 w 5 ,1 0 2.40 0 -. 00227 0 0 -. 0000015

w3,1w3,3Wl,5 -3.95 0 .1526 -. 0352 0 0 0

w3,113,.w5,1 ,21 0 .582 0 0 -. 000586 0

w 3,1W,5w5,1 2.600 -. 374 0 .03046 -. 00537 0 0
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TABLE 33 (Continued)

C C02 C3 C4 C5 C6 C7

w3933 0 4.11 0 0 -. 00450 0 0

w3 ,3 2w, 5  14.32 0 .361 -. 0826 0 0 0

332 7.93 0 .985 0 0 -. 001765 0

w3,3Wl,52 -9.14 5.60 -. 5116 0 0 0 0

w3,3w5,1 0 4.37 0 .0305 0 0 -. 000225

w3 , 3 Wl, 5 w5 , 1  -. 91 2.237 0 .1084 -. 02459 0 0

Wi,5
3  9.60 -1.03 0 0 0 0 0

W1,5 w5,1 0 -. 844 .708 -. 0631 0 0 0

W 95W5,12 2.86 0 0 0 .00978 -. 00426 0

w 0 0 .614 0 0 0 0

WADC TR 54-8 146



TABLE 33 (Continued)

C8  C9  C10  C11  C1 2  C1 3  C14

l,13 1.446 -. 02705 0 0 0 O 0

Wl,1 2l,3 -. 938 .424 -. 01475 0 0 0 0

2'l,1w3,I .596 -. 0682 0 0 0 0 0

2

wi,1 w3 , 3  -. 2025 .328 -. 0367 0 0 0 0

'l,1 Wl,5 0 -. 0625 .1208 -. 00429 0 0 0

'l,1I w5 , 1  .456 -. O914 0 0 0 0 0

2
wl, 1 l1,3 5.19 0 .0341 -. 00469 0 0 0

2Wl,lw3 ,I 11.33 -. 420 0 0 0 0 0

WlvlW3,32 10o59 0 X0740 -. 0392 0 0 0

Wl,lWl,5 52 10.08 0 0 0 .OO498 -. 001064 0

2
Wl,lW, 29.35 -. 812 0 0 0 0 0

v1 , 1 W1 , 3 w3 , 1  *33 .1235 -. 0486 0 0 0 0

•,,iwz,33,3 -. 264 0 .0596 -.02633 0 0 0

Wlwl~l, -1.797 .3121 0 .0196 -. 00392 0 0

Wl,1W, 3w5,1 -. 0806 .1553 -. 0710 0 0 0 0
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TABLE 33 (Continued)

C8 09 c0o Ci 1  314

WllW3 ,iw 3 ,3 -5.95 1.440 -. 2173 0 0 0 0

wl,lw3 ,1lw, 5  0 -. 0974 .1305 -. 0294 0 0 0

Wl,lW3,1w5,1 -. 109 .0600 0 0 0 0 0

WllW3.3Wl,5 6482 -. 073 0 .0305 -. 01234 0 0

Wlq3,3X5,1 .199 -.100 -. o628 0 0 0 0

W,1 1, 5,1 0 .0671 .0146 -. 0264 0 0 0

Wl, 3 0 1.440 0 0 -. 000494 0 0

2
W 2,3 w3 , 1  -. 640 0 .00885 -. 0105 0 0 0

w1 , 3 W3 , 3  0 .510 0 0 -. 00600 0 0

2

Wl, 3 w1,5 2.384 0 .594 0 0 -. 000705 0

2

Wl, 3 2W5,1 .493 0 .0008 -. 0077 0 0 0

wl, 3w3 , 1
2  -5.07 2.78 -. 2535 0 0 0 0

Wl,3W3,32 0 4.79 0 0 -. 0368 0 0

Wl3l,5 0 3.79 0 .0231 0 0 -. 000376

Wl,3W5,12 -9.74 5.21 -.,47 0 0 0 0
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TABLE 33 (Continued)

c8 c9  010 c1 1  c 1 3 14

W1 .iw , 3 7.10 0 .600 -. 1880 0 0 0

wl, 3w3 ,1wl,5 2.46 -. 156 0 .0556 -. 0180 0 0

wl, 3 W3 ,1w 5,I 1.641 .504 -. 2372 0 0 0 0

wl, 3w3 , Wl,5 -2.75 0 .1865 0 0 -. 00744 0

wl, 3,3 5,1 -4.,89 0 .0931 -. 104 0 0 0

Wl, 3l,5w5,1 .650 -. 585 0 -. 018 -. 0029 0 0

w3.1 6.06 -. 972 0 0 0 0 0
2

w3 , 1 w3 , 3  -5.51 6.49 -1.223 0 0 0 0

2

w,1 w1,5 0 -1.463 1.233 -. ,12 0 0 0

w3,I w5,I 6.12 -1.584 0 0 0 0 0

w3,1w3,3 12.25 0 1.276 -. 527 0 0 0

w3,1,5 -1.206 0 0 0 .0227 -. 00750 0

2
w3,1w5,1 17.39 -3.401 0 0 0 0 0

w3,lW3,3Wl,5 -14.86 3.36 0 .360 -. 1282 0 0

w,, 1 v 3 , 3 w 5 , 1 -7.45 7.25 -2.035 0 0 0 0
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TABLE 32 (Continued)

C8  c9 ClO Cl 012 013 "14

w3,1, 5w5,1 0 -. 514 1.014 -. 270 0 0 0

3 0 4.34 0 0 -. 0810 0 0
'3,3

2

V3,3 21,5 5.78 0 2,015 0 0 -. 02834 0
2
2 V 11.17 0 1.180 -. 606 0 0 0'3,3 '5,1

V3 , 3 1,52 0 1.52 0 .084 0 0 -. 002889

w3 2 -6.59 11.01 -2.629 0 0 0 0

Sw3 , 3 Vl, 5 5 , 1  4.44 .52 0 .195 -. 1153 0 0

3,5 0 0 1.300 0 0 0 0

W1, 5 2W5, .639 0 0 0 -. 0070 -. 00089 0

2 0 -2.61 2.63 -. 3294 0 0 01l,5W5,1

3
w53110.60 -2.51 0 0 0 0 0
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Non Linear Term TABLE 35

HI H2 = I3 = R4 FH 6 =

-. 620 .09894 .032192 -. 011851 .0273624 .00704138
h

2
.70 1.8 -. 308 -. 04684 .04367 .02588 -. 00761590h

" .3602 -. W,60 -. 237 .0402 .00o81520 .o54Z?h 3

2

- -. 152895 .1O52 X073 -. 0838 -. 02150 -. 001807

2
h. .13881 .1162 -. 00704569 -. 02217 -. 1244 -. 00151685

2
1..19 -. 03 0709 .020 47 -. 010 82 -. 0039 1952 -. 0906
h-

q -2.24 .338491 .1619 -. 043514 U0784 .0231184

2
w1.1 '3.3

3 -4.95 .875 .249522 -. 10613 .19688l9 .05005

b 3  -4.34 .619752 .21247 1 -. 073223 .1467 .0278

S-4.45 .633899 .3341 -. 080868 .219829 .0462826

S-12.70 2.139 .634673 -. 25620 *532422 .145081h3

-. 933 .4.57 .252 -. 180 -. 07" -. 00633
I. 13 311

h3

1. 1.3 3.3 h3 .770 -. 1U91•3 -. 357 .040213 .0242 .0266

h 3 1.387 -. 4.06 -. 1576 .0829 .00165457 -. 0121891

.3 51 045274 .0339956 -. 0727 .1054 -. 00780271 .0634

h3 3.08 -1.156 -. 162592 .15480 .1385 -. 02126

""3 .142167 -. 330 -. 0095535 .1551 .1947 -. 00161405

w 
1 ,

1 V,
1 V 5.1

.479 -. 196 -.1106 .0554 .00916206 -. 00157925

-1.169 .369 .354 -. 1287 -. 00345243 -. 02a1
b
3
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--. 6P3 .530 .1273 -. 1575 -. 1513 .L03778.6

1-",10 00925 *0115347 -. 00022887 -. 0981 -. 000627717 .000'16704
h•

1i,.2.054 -. 11; -. 0698371 .1478 .128820 -. 0130195

S1."640 -. 300069 -. 687 .075359 .0136 .0248

7.- -1.25044 .979 .121571 -. 478 -. 142396 0CO910762

* 1.5 -. 161 .593'5 .1460 -. 105462 -. 599 -. m348992
-.59

.150982 -. 0175-277 .1602 -. 0115270 -. 00731809 -. 1921
h2

h 3.54 -1.76 -. 190364 .24.444 F .2587 -. 0154

h"ý2 S3.0 659 -2.39 -. 168005 .340502 .32"7329 -. 0310944,

- •7 -2C,, -. 243326 .550 .425603 -,040• 237
h

2

'7.)03 -3.51 -. 3655P7 .456459 .523 -. C7E9996

1 '3"3--4.1 1."'562 .334663 -. 134903 -. 094 -. 0414

1.' I 5 _3,z 1.142 .828 -. 405 -. 0388697 -. 0466
h

i-2.17 1.217 .418 -. 402 -. 301 .00983973

-. -. 955 --.703 .243178 .650 .1029

-.ps6 .13294P .229 -. 0119026

.337530 -11 C{3 -. 481 .287 .00393589 .2071,

I.n5163 -. 42616 -1.78 .301 -. 057,184 .0453470

-. •.' 1. •.77 1.760 -1.3F5 -. 171502 -. 034C002
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( Continued )

S.4"2013- 
1.031 -. 0152429 -. 171243 -. 902 -. 00487436

w

-. 021 .157 .200557 -. 140641 -. 03651,76 -. 745

S3. -. 60812 -3.50 .281172 -. 0780122 .0931361

h3 3.77 -. 58180 -1.610 .153433 -. 190819 .0952

h 5.71135 -1.31781 -5.09 .961 -. 149982 .129547

"-31'3"1 8.09 -2.270 -. 441453 .319783 -. 0225971 .0696h3

h3 1.45 -1.382 -. 257200 .713569 .557 .542

n .78P188 -1.539 -. 0526277 .528 .954 -. 00893141

.159131 -. PO -. 112196 ,00452134.41

h3 .59 1.07538 .00777411 -. 161238 -1.316 -. 1215

2

h3  
-. 1 .29799 .266925 -. 0591174 -. 367 -. 832

h3 -2.97576 1.958 .329107 -1.(79 -. 349274 .0193732

w. (-, )2•3.3 ,5.1) - . 24 8 2.9 9-3.82418 2.19899 2.08 -2.16 0.365473 -. 0366604

S-7.53 2.470 1.447 -. 797 -.105474 .0364934

0 2.77469 .89836 -. 165216 -. 171174 -1.55u -. 0293032

'54

h3 .227024 -. 019795 .635 -. 0448441 -. 0117136 -. 551

v.(5.)2..-
231 0 6 .2 8 -.0 6 3 86 3. Z 79 00 -2 .16 - . 01 7•3 393

.56381 .3 • 52162 -. 218v'71 -. f-87
S... . .15 -2. 031
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TAKIC 3-6

Results of Rayloigh-Rits analysis for buckling

parameter, K, using selected terms of series (97)

Na2

K K Percent increase of pro-

Coefficients (Non-Prestressed (Pre-Stressed stressed plate over non-

Retained plate) Plate) westressed Dlate

1,3 9.91 10.09 6.9%

V 1 , 2  8.72 10.0 1.9%

and " v8,.6 9.97 .49%

"v1,2 and "3,2 8.38 9.61 14.7%

Accepted value of 8.33

Ref. 22

TABLE 37

Ratio of deflection coefficients used in

Rayleigh-Ritz analysis

Ratio for Ratio for

C officients Non-Prestressed Plate Pre-Stry used Plate

"V19vv2 4 -19.1 37•.7

Vl,2/V,2- 12.3 29.2
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SWC TION XV

Summary and Conclusions

The proposed method of prestressing has been investigated and
shown to be capable of raising the buckling load. It has been shown that
the buckling load is quite sensitive to changes in the magnitude and
distribution of the stresses produced by the prestressing process.

The experimental program was divided into two parts. In the
first the deflections and stresses induced in the prestressing process
were determined, and the effect these stresses would have upon the buckling
load was calculated. The calculations were performed by the Finite
Difference Method and by the Rayleigh-Ritz Method. For one plate, which
was the only plate for which the Finite Difference Method was used, this
method predicted that for the stresses found the Buckling Load would be
raised over 100% while the Rayleigh-Ritz method predicted a raise of
approximately. 130%. Because it was felt that the Finite Difference Method
was unreliable for the small number of net points used and also because
of the lengthy computations it requires, the Rayleigh-Ritz Method was decided
upon for determining the buckling loads of the plates. The Rayleigh-Ritz
method showed an increase of about 20% and 13% using the data of two of
the other tests. It is interesting to note that for the latter two pre-
stressed plates a symmetric three half-wave buckling mode was predicted
and for the non-prestressed plates of this (3:2) aspect ratio an anti-
symmetric two half-wave buckling mode is predicted.

Thus it was shown that relatively small in-plane stresses (less
than 1000 psi) would have a considerable effect on both the buckling mode
and load.

The second (and main) phase of the experimental program was
that of actually testing prestressed plates to determine their buckling
loads. All the plates tested were of the same length and width but were
of various thicknesses and had various initial radii of curvature. A
number of non-prestressed plates were also tested for purposes of comparison
and calibration of the buckling jig.

The average increase of the buckling load by prestressing was
38% measured by the "Top of the Knee" method, although there was considerable
scatter. Some plates exhibited raises in their buckling load of over
100% while other plates had their buckling loads slightly lowered.

A need for a more realistic evaluation of the strength of plates
has been pointed out since the present concept of the buckling load is
based upon the behavior of the ideal plate. In actuality there is no
sudden decrease in the strength but only a gradual decrease necessitating
some criteria probably based on the magnitude of the deflection as a ratio
to the applied load.
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The theoretical program also was divided into two parts. The
first part consisted of finding the stresses and deflections induced by
the prestressing procedure, while the second part consisted of finding
their effect upon the Buckling Load by the Rayleigh Ritz Method.

Von Karman's non-linear equations were used in finding the
deflections and stresses. These equations normally are used only for
deflections of the order of the plate thickness, however, since in this
case the major deflection is from one developable (cylindrical) surface
to another (flat) developable as to take advantage of this. The method7
used in solving the non-linear equations is basically one used by Levy
in which the terms are expanded in Fourier series which transforms the
differential equations into algebraic equations in terms of the trigonometric
coefficients. The resulting non-linear algebraic equations are then solved
by an iteration method.

The buckling load of one particular is then determined by the
Rayleigh Ritz method and it is found that in this case the prestresses found
would raise the buckling load approxinately 15%. This conclusion, however,
can be subjected to questioning, because in the use of Rayleigh-Ritz method
some assumptions are made which may not be actually valid.
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S~TIO 'ýTII

APP-ETDD:S

APPENDIX A

VALIDITY OF YOSHIKI'S T•THOD FOR DETERMINING THE BIUKLING LOAD OF PLATES

In the section reviewing pertinent literature the method developed
by M. Yoshiki (II) was explained with reference to Figs. I and 3. The
method is based on the parabolic post buckling behavior of plates and
which can be proven f6r clamped plates in the following manner:

The total potential energy in a plate is composed of the strain
energy due to bending, membrane stresses and the movement during buckling
of the applied load according to

W V1 + V2 -T (Al)

For a rectangular plate with clamped edges the strain energy due
to bending is

V M D_ ff(V2w _V 2 Wo) 2 dx dy (A2)
2

while that due to axial compression is

-2 h f y cy dx dy (A3)

00

but since inf(x) only, and -= E ey

V = Ebh J ,2 dx
2 0

where w0 is the initial deflection.

Denoting e as the total strain measured from the unstrained perfect
plate, i.e. be is the end shortening of the plate then

b 82 " 2

be e y + ) dy+1J (-) dy
T52 4y 2. 1 ay

0 0o



or i

1 0orC = e bz_ 2 - W 2 d7
2b J1 8y

0

then eliminating y from the expression for V2 the following expression

is arrived at

V2a e ( 2 d x (2)

2 ff 2b,~ dfjd

and

1 p b 9 where p = a N (A5)

2

Assuming a deflection during buckling of the form

W = wmn sin 211 sin E sin 01 sin wry (A6)
a b a b

and initial imperfections of the form

w0 = W'fmotn0 sin sin 21 sin sin (A7)
a b a b

which satisfy the boundary conditions w 0 and W= 0
an

The energy expressions become

l~aV n2({;a)' 12P 2(n 2+l 2 +8n2 (b)( t 2(2l2

÷ 8 2 4 -8 (.a m) (M 2 ÷+1 )

b

"wmo,°o02  2)(2+ (°) +l)2+8n2 + (2 2 2+wm~n, 2+SO) n 0+(1) (2+ o)2(O+z )
a
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b~~ m2 m , . .

2~nmwo [h (n+1)2 +(n -) 90 l 02

-(n-1) i2_on-nO 2Oy LmO+l)2+(Mo-l)]zl

2S.(m,ý -1+) 2ýi(1 2+i .(2in

-(M-l 2_,ý mO-1 2 0 '2m

-2_u Umnmn 1)2(mb+1)(m +(m_1)2(M)-1l) 4f
a m f ~nlM

mO-2 2-mOj

(2- n n-Wma

-2(,! 3 ~m~ ' m~nmO,nO nl n+) (-)2(oljf
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2o.

42. 0n+)~ 3 (A8)

which may be written In the form

V1 " UlWm,n 2 2mO,nO 3m,n mO,nO (A9)

where al, a2 , and a3 are constants which are functions of mn,mO,nOa,

and b only and a3 - 0 if a - nl +-p or mo - nO+1l-p where p is sny even

integer.

For the special case where w and w0 are of the same form, i.e,,

Ma mo r, n - no p then

V1 1 a4 (wagn - %0onO)2 (0o)

where

b

Also
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Ehira 2 r A

+421 -(n-i) 2(3n 2+2n4.3)d4 +"~ ~ 8 +17 0 1no

4,+8n2+o_(,,o_. ,,2, )• +;o3)/ in224 2W2 2
-2oin,n WmonO

-0-

2 A2

"W2D TR+4ný( 54-8 1

_,0 (1)) n 4h

1024 eC n2 lý 22 -( 12g
IT4 fmln E+

-VMn h1+ajj[2+4 _~(nd~. 2 1) A1 1
which may be written in the form

V2. e.4  2 2 2 P 2 2
+~2V 4 nO P3w 'YAO 0~l 1P4 ! + mOpn2 +P6! a,nO
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Again for the special cas a -s , an n in - p

V j2 + a( , 2.v0 3
2+ r v, 0

2)0

(A13)

wghere

2

2 6553673

The total potential energy defined according to Eq. 01 ran be fotmd
for the special case where a - no - r and n - n0 - p to be

w- a4 (,,,,,.,,,o,) 2+ Y'12+ r' " 2 2 ) ,(v 2
n•,., -=o,,,o mn +xqn [•",,," o,,e"

Now minimfizing with respect to e and wmpn

ON " 2 Y €3 #3(w n 2" VaO,nO ". , 2 2, p b. o (AI)
as 2

w ww 2 2 )+2 em

OWM,, "4(wm, ,nO)+4 2 m, n m,n mn
m(nn

(A16)
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Solving Bqs. (C15) and C16) for e there results

e. 6P + '2 (Wvn 2 -WO.nO2) (A17)

and
+, o -(•,,n 2.,,=o,,no 2 , (A1S)

u"n

Equating Eqs. (A17) and (A18) there results for P

now setting wm,n- 3On0 a (there results

vt.n2 -In 2 • 2(3.+ 2VM.n A0
Wmn"mO,nO =(o

and

P a , ý2(1++ i2 W'4n _P2(A2L)

However In the post-buckling region the deflection w become large,
relative to the initial deflection wo, that is

V~jWm,n

and

P 0 1 J2 P (A2)
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Since the strain gage readings taken during the buckling tests
were assumed proportional to the deflection caused by the applied load,
Eqq (A23) demonstrates the parabolic post-buckling behavior of clamped
plates assuming the plate to buckle in a mode similar to the initial
deflections.

For the prestressed plate of aspect ratio 3/2 which is under
consideration the deflection forms which will predominate are

SU wl n2 sin2 sin 21 sin2 (A24)
a b b

W 0a oio sine2 __ sin2 E (A25)
a b

For these forms of deflections the bending and membrane strain
energies can be found to be

12&a2  - 2 (- v - w1 ,2  246() + 32(-) + So
Thr b ab3

2 4 .)3+48( 22)
+48(-) i+ 32(a

O10,0 L b a b)3

-216 wlo° wl,2 (-1)3 (A26)

2_ 4+4W 4-8w 2 2
M&a V2 = r4  +875,',2 "" oJo 0 ""0.1 0w 1 2

5120 ew 2 +0 2
7P1o0 (A27)

WADO TR 54-8 168



The conditions that aw 0 and al 0 will yield
8. 8w11,2 .•

22- 101,10 MQPb± ,V b2

15,2- 0wiv3 ,1 +h 322 1ai23+16- + 40 -~*0

" "h a awl, 2

letting -v1 2 M 0 0  and using Eq. (A21~
2 Cv 10, •m 12 m

75S2(1+ I÷2v 2 2)"1 2 69M V - + 128

l0910 M W12 ab Eh
N• b2

[23 +16 b 10b ] UO(A28)

but according to relations (A23) resulting from the fact that VWRn
Vzo,n0 Eq. (A28) may be written as

"l72 8.+2 2 17 .+16o b+ + 2 1.0 (A29)
Nab Eha a-

or Just as in Eq. (A23)

01'dv, 2 (1A30)

Thus it is demonstrated the parabolic nature of the post-buckling
behavior of flat plates with initial deflections. Since the above did
not depend an the actual valus of amotno the above derivation will

apply for assumed deflections of the general forms of Eqs. (A6) and
(1A7).
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APPENDIX B

DERIVATION OF EQUATIONS GOVFNING STRESS FUW1TION COEFFICIENTS

Upon substituting (71) into the expressionVAP

~2 2 2 Pr M
V 4 F - V4  F, E b J c+ e fs Cos (l

p.O q=O ppq a a b

also by substitution of (70)

82v 2  2w 2v r4 )0 F0r-0(x) _-- a ----a = . Z . (s-n) rw)ne 8y 2 m l n- r2s2 L

rirx 7r 00 o00-M(s-n w=,n W r_,s-n Cos C~ os any. +. E .Z . Zja b 4a20 z-1I n-l r=2 u-

r-m~n~mnu] CosrTrx COS Wy
m~nu)uwa b

VI4  0 0 ~OP0 00+ Z Z Z Z m(s-n) t-t)n+m(s-n1 Wnwm-t,s-.n
4a b mul nn1 tt -=*us=2

Cos Cos~ Z Z m(n-u)
a b .4a M-1nzml tin -*OU -CP

[m-t)n-m(n-u] mnWmt,nCuCOs tux c00suy (B2)
a b

Since (BI) has indices running from zero to oo(B2) will be transformed
into a similar form making use of the identity cos(-a) = cos(+a) and
for purposes of simplification the four summtions of (B2) will be labelled
Z A, 7 B, Z C, Z D, in the same order as they appear above.
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-.A Z m(-s-n) F 1+l2b2 m n-l r-2 s=2 an r-is-n C b

Z B. Z Z Z Z (n-u) r-m)n+m(n-
Sa•b m-1 n-l r-2 tpl-I ~

w00 , , _ ao

aab 4abm1l nn1 r-i2 u-=

m(n+u) (r-m)n+m(n+u) Wit nWr~ ~~ Co. rw .0s.

Ul nrmnu a b

4 2Z E Z Z m(s-n) m-t)n+m(s-n W_,nWo _ ns__nCO o&
4a b m=l n=1 t= s=2 a b

(B3)

4a m1 n=l t=l u-0

Wm,nwm-tn-u Cos Cos
a b

+------ 2 Z . m(n+u) m+t)n-m(n+u
/+a b m=l n=l t.O 1il

mrn m+ttn+u Co Cos

a b
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IrO400o soO00
+ Z , 'E m(n-u) Fmt)n--m(n+u

4a b mal nl- t0l uml PO

Wm,n mut,n+u Co a Cosb
a b

O-

S4a b m=l n-1%= t=Ou-

m- n W- t,n- u Cos --- Coo ,
a b

therefore

(o2,,2 •8 2 a2
MxY Oxa

Equating coefficients of (Bl) and (B/) according to eq. (67) the
following results:

k 12 ,r + / 2. 24
lrpq 1 2bJ a2 2ALk + Z Bk + Z Ck +E

4 b-k-i k-i k.i

wherekA, E iniq::i p-n-mqn V..Wpi~
ml n-1

itfp O, I andq O, 1

A, 0, if p = 0 or l, or q o 0 or 1

WADC TR 54-8 1.72



B1 Z 7, m(n-q) )n+m(n-q) Wmnvp-mn-q1 Dl n~q+i1LJ mnpi~-

if p 09, 1 and q 0

B n O, if p = 0 or 1, or q = 0

B2 a m(n+q) ~p-m)n+m(n+qJ mnvp.,~

if p O, 1

B2  O 0, if p - 0 or 1

C Z m(q-n) m-p)n+m(q-n w+ wm=p+l n - 2 m,nW-p,q-n

if p 0 and q 0 0, 1

C1 = O, if p O, or q =0 or

00 q-1 ,~~~~- ~ i
C a Z Z m(q-n) m+p)n+m(q wm2 l n=l n u n+p q-n

if q 9 o, 1

C2 a O, if q 0 or 1
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D1  E z (n-q) m-p)n-m(n-q wZ V UmnY
m=l+p n=l+q. mm-p~n-q

if~p$o

D= 0, if p = 0

D2 Z F. m(n+q) m+p)n-m(n+q7Vm,nWmip,n+qw--l n-1PVMlm~p~

if q O0

D2= 0, if q = 0

D . m(n+q) m-P)n-m(n4qV] w w3 Ml+p n=l 1m,n m-p,n+q

if p 0o and q 0 0

D3  O, if p 0 or q 0

D 4= Z Z m(n-q) m+p)n--x(n-q nmpnq

m=l niil+q UmgnWnpn.q

if pýOoqýO

D4  0 if p 0 id q =0

Making the indicated transformations (B5) can be put in the required
form as shown below:
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9

bp,q 4(p2 b q -) Z1=1 (B6)

a b

letting m - k and n - t in A1

p-I q-1 )it2]
B Z Z (p-k)(-t)-k2(q-t) wk,i k,,tk=l t=l

if p ý9O, 1 and q O, 1

B1 = 0, if p = 0 or 1, or q w 0 or 1

letting m - k and n - t in C2

coq-1 +k
B - Z [. (qt 2] W w(k*p) (q-t)
2 k-1 t=1

if q 9, 1

B2 = O, if q - 0 or 1

letting m - k+p and n a t in C1

Bq-1q-l
B 3- 7.Z (k~p)(t)(k)(q-t)+(k+p) (q-t) lW(k+p),,Wk,(qt)

k=1t=1

if qj 09 1 and p# 0

B O, if q = 0 or , or p =0
3
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letting a= k and n t in B2

00! [kp-I(~q+B4 7,• z (p•(~)k(t~q 2Jwkst(p-k),(t~q)
k=l t=I

if p O, 1

B4  O, if p - 0 or 1

letting m - k and n - q+t in B1

p-I

B 5 z z [k(t+q)(p-k)t+k2t wk,(t2q)J(p-k)t

if q ' 0 and p 0, 1

B5 = 0, if q -O, or p 0 or 1

letting m - k and n- t in 1

0 ZO [kt(k~p)(t+q) _k2(t+q)2ju](~p(~
k-1 i-1 Wkq e(k~p) (t+q)

if q '0

B6 -- O, if q = 0
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letting a - k and n- t+q in D2

B, Z' 7" [(t•)(k~ ~~~ kv,(t~q)w(k÷p),tk-i t-l

if q 0 or p 0

B7 0, if p q" 0

letting m = k+p and n , t in D.

3

if q 0and pjo0

B8a 0, if q - 0 or p 0

letting m a k+p and n t+q in D.

co~
B9 Z E I(k+p) (t'qkt-(k' 2 t2J ~~)(tqws

k1 Lt-

if p0 0

B9Oj,if p 0
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APP•NDX C

DERIVATION OF EQUATIONS GOVERNING RELATION OF PRESSURE AM DEFLECTICN

C OEFFIC IENTS

Upon substituting (70) into the expression A'

(inW + w 2 22 n"

4W 74 E Wmn 2 2 sin -= sin (Cl)
m-n1 nba b

also by substitution of (70) and (71)

62F 82w a 6F a2 w 2 82 2W

-2 -2 - 4-778-2 - -

OY Ox 8x Oy ax~ly MxY

2 Eo 71 z n " sin (ism)rx sin
4ab ml n-l .O q!-O 'a b

+(m•u+np) 2 b w sin (PDM)' sinnn
pq ,n a b

+(mq+np) 2 bm,n sin sina b

*(mq-np) bp,qWm,n sin sin b}
a b (2

(C2)

To change (02) into a form simdlar to (C1) the following transformations
will be made

p+m - r

q+n = s

r-p M t

n-q = u
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Substituting the above transformations and making use of the
identity -1 00 in (C2) the following equation results:

Z f(u) - Z f(-U)

-÷ 1
8O 2 V 82j, 82V 2 82?

8y 8 x MY 8 OXCIYx

8 ZFs.n)rn-(r-.In)b V sn sin
4a b m, n-i rcl a b

z Z -u)m+(r-) w sin x sinm~ nlFnlu~ r-mtn-u mtn ab
z-1 n-1n] r-1 u7 1 a b

- E Z = Z J(nu)m+(r- w sin sin
mxl n-1 r-l ual L- r-mn+u Mtn a b

m=l n al t-- 1 a'n a b

- . Z Z [(s-n)rn(m+t)n b v sin sin Z

M=l n=l tl 8= 1'-n' a b

00 00 evg

1 Z[Z (n-u)rn.(rn-t)n _t vn-Vg sin t s in 'W
mal n-l tzl uil -tnufl mn a b

00 000O 00

+ T, Z Z Z [(n+u)m-(z+t)n 2 b. w V sin sin
mal n-i tI u=l W+ Ln u mn b
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CO00 00 2 t2.[ ZIn-i1) b6. -,b,,U sin sin uff
Iwi n-1 t1.i ui-1 .. m-,-ut a b

CO0@0 00 00 4ý 1u
m z Z E E (n+u)m-(ma-t)n h w sin -sin r

moi n-i t=Iul pni ' vn a b

~A9

4an'iV (a')

Equating coefficients of (Ci) and (03) according to equation (66)
and noting that

I Z p sin-ý sin &PT~ Pr,Bs a b

odd integers only

ry~ 2 2 -~

a b b

m U n--n1 ~

Am -Z EZ
3in Amls
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L(a-c)a(m-r)nJ~
+ ir n- -,s

15 " -" b v--n)m(n+r V

nt-- nai *+rvs-n xmn

r" nws

A- Z [(n+s).(us+r)n b v

7 r n- ur,n+s 3,n

- -Z Z b

,-ar w.n-s (CA),fl5 1I~

(04)

Equation (C4) is put into the required form by making the indicated
transformations

* 2 2 2 hW4 9

~rs - -7 4a2 2 Z) A n (05)
a b b n.,

lettingm - k uad n a t in A,

k-1 tol
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lettngl- k and n r- t in -11

S... .A4 " [4 ..,.?

A M Z E t+,s)(k+r)-k) 1

letting m k and n w t+8 in A8

letting ma k and n a t in A.

WD T-A- 2t~a)k-(k+r) kot

letting a k and n n tea in A2

k-i t-0aOtk~~

letting a a k and n = t in A3

letting a mki' and n - t in A4

Ao -Ez z at(~)k]
k-wO tal kotkr,

letting am -k and ii - t in A 5
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APPENDIX D

SATIP CTION OF STRAIGHT EDGE BOUNDARY CONDITION

It can be shown that the assumed form of the stress function, F.
and the deflection form w, will automatically satisfy the boundary
condition that the edges of the plate must remain straight. This is
done by showing that the end shortening of the plate is independent
of x and y and must therefore be constant along each edge.

Substituting (70) and (71) into (83) and then into (81) the
following relationship is arrived at

a V2bZ Zb 2Vý--L) o T ox fJ'{ puO q=0oPt a b2 a b
0

SZ Z mm'W, V o
2a 2 n=l n-i m W1 n'il a

coo03 sinnM sin 1 dx (Dl)
a b b )

It can'be seen from Eq, (B6) that boo - 0 and also that

b E b 2  f.q-1. 2 2
bo, q /* 2.q Ea %qi 2(qt)q Wks'ek qq-t- Z Z k q vkq wq+t

(D2)

Integrating (81) and setting bo, 0 a 0

WA .2 Z boE E w W SIO sinE b i ,2 b 4.a m-1n-1in'-1 ",n mp"bn
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or

" Eb2 a b q qcos-- Z E E
E 2 q b 8a wl n-1 n'=l n

oe (n-nt) e- cos (n+n') 1D3b b

The first summation of (D3) will be exaiuned separately. Using
(D2) it mw be written

ir2 a v 2 _ 72 - q-1 k0 k2 (t)
E b2 q=1 b 4a kal t-1 qq2 q

wqtCos z+ E Z Zk vkwkt coo~~b 4a k-1 ktkq+t tos lb

or

72 ba q2 co 2 w2 q-1 2

Oq E qZ k WktU 7-Cosoo
E b 2q=1 qqb 4a, k-ltx-lqO-2 wikvq-t b

1r2 .o3-1 oo 2 t OS
+--- M Z k -W wCos
4a k-1 t-1 q=2 q b

÷-Z Z Z k wk, Wkoq+t cos
4a k1% t- q-1 qtqt b

which may be written
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2 Z- Ebo qcoo~ E EE k wkektcos W
E b V, Oq b 4a k-1 t=l qw-2 b

W2 0 q-1 0 2

E ,Z E k -W k,tWk,qt Cost
4a kl t=l fq=2 q b

where t q-t

+- E Z k 1 Wkgtekpq..t bo
4a klt=1 q2 q b

where q-t t

2 vkl2
4- z L ,2 oos".

/+a kul t=1 2 kt b

where q-t a t, i.e., q - 2t

22 ___0

+ - Z Z k wktWk,q+t cos
4a k=1 t-1 q!=l b

Here note that if we restrict the first simmation of the above equations
to t q-t then

7r.2 ~q-1 c 2 r2 q- 2 M
Z_ kep- o Z k wktwkqto--

4a k=i t= k q=2 k,t kqt b 2a k-1 t-1 q-2 k kq t b

where t > q-t
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V2 2 2
_ Z kw ',tCos~

4a k k,t o b

where t - q-t

then changing subscripts by the noted transformations in order to clarify
the combining of terms the following results:

ir2 a 2 ir2  0q-1 "1 2W-7 Z. bo0 q •os= -- Z Z E kwtw os •
E b q=l b 2a k=l t=l q2 wkq -tC b

where t q-•t

iT2  0,2 2 2 ~q-1 o 2 ar Z kw t Cos 2 + E. k twk- wk q. cos a"
4a k-l b 4a k=1 s=l q=2 q b

where s> q-s let t = s

-20 q-l 0 2
+ - T, E 2 q Wkqqswk,s cos
/a k=l s=l q=2 q b

where s9>q-o let q-t = s

7rkaM 0 2  cos
+ Z. Z. Z k wk,twk,q+t Cos

4a k=1tI q=l b

r'2 00 22 2tmv
7 + • k• k,t cos

8a k=l t=l b
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After noting that the third and fourth summations of this equation may
be combined as fo~lows*

o q1 ' CIO 2 ksk- k2 k- 'E E Z '(k w wk +: Wkvq....SW cos2E
k=1 s=1 q=2 q q b

where s;7q-s

= Z k lWkrtWk,q-t co.

k=1 t-l q-2 b

where t > q-t

the equation may be written

2 2 a q-1 ko 2

- 7- boq cos- -- Z Z 7k wktwkt cos0
E b q=l q b 4a k=l t=l q=2 q-t b

where t ; q-t

7r2 oaCO 00 2+l 7 7- Z k2w9wk~~ o

4a k=1 t=l q= ,tWk,q+t co b

7r2  -22 2_t•.
-- k w kvt cos (D4)

8a k=l t- kt b

Upon examination of the second term of eq. (D3) and noting the two cases
which may occur, i.e., n = n' and n /n' the folloving results:

7T2  '002 -0
--W2 n n mww bcs(n-n') - cos(n+nf) j
8a m=T n=5 n1=1 b b
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VT2  00002 2 wý -2 2 __rj

E E m t 7 - Z a z c 0 b8a Ma1 n=l n 8a m1nl b

772 0 ON 2
7- Z a2Wmtnwm, nco(n-nW)

8a m-1 n=l n t-I b

n 9 n'

2 z 0 1Z mu 2 cos(n+n')
a m-i1 n=l n-Ii ' mnl b

n 9 xit

Noting that

8a i;l n-l n'-1 b 4a m-l n-l n'-1

mw 2Wm,nu cos (n+nt) b

n' >n

and

772 2o -2 2 c
7- 7 m wm Wm,ntC o s(n-n' u M)_•- E- .

8a =nFl n1 nt"l b b w-l n=l nfil

2 wm,nwmncos (co -n) 2
b

n>nW
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the above may be written as follows:

a2  V 2' ug w ' Cosf(n') n _ cos(n+n')
8a nu -1 n'=1 b~ mbn

r,2  -. 2 2,, 2  2
- mw _-- . Z. wmn . mwncos(n--n)

8a m=l nl m,n 4a mul n=l n'-1 b

n!*n'

4a __I n~ 2'l •_mn
+-- m w.mu Wm, cos(nmnn)o

4a m=l n1 nf=l b

VT2  0CO2 2 ____nr+ - EZ MuW o
8a m~l nr-l m~n b

Or making the indicated transformations

VT2  0 CO 2E E Z m wmu cos(fl-fl) cos(n(+n')
8a' rul n=l n'=l b, mbb

where n>n' let n-ni = q

r22 2 VT2  2

8a n-l n=l 4a m4 l q=l n'=l b

where n'>q-n since n' n let n+n= q

+I72  00000 2CoZ X Z mu t cosw
4a m7l q=1 nI=l m,q-n,--nl b
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7r2  000 2 2E+ - Z ZMmwmun coso
8a m=1 n-1 b (D5)

Substituting (D4) and (D5) in (D3) the following relationship results
for the end shortening of the plate in the x-direction.

_,V•2 y. 2 win2
x 8a m-l n=-1 Mn (D6)

similarly

V2 Zny 2  2

8b m-1 n m,n (DW)
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